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6	 preface

preface

In this book I hope to lift the veil of mystery and secrecy that surrounds 
mathematics and equations, so that those who are interested can see what 
lies underneath. 

Firstly, let me briefly address some questions of terminology. The words 
“equation,” “formula,” and “identity” are all used in mathematics, and have 
slightly different shades of meaning. “Formulas” tend to be a little bit more 
utilitarian; you use a formula to solve an equation. “Identities” are somewhat 
less deep and have the connotation of something that can be proved purely 
by symbolic manipulation. For the purposes of this book, though, I am not 
going to insist on any such distinctions.

You will also frequently encounter the words “axiom,” “theorem,” 
“hypothesis,” and “conjecture,” in this book. An axiom is a statement that 
mathematicians assume as an unproven fact. They may do so because they 
genuinely believe it is a universal truth, or they may do it just as a convenient 
starting point. 

A theorem is the gold standard of mathematical truth; it is a statement that 
has been formally deduced from a specific axiom system. It is not subject to 
experimental error or intellectual fashion … except for the fact that the axiom 
system itself may go out of fashion. Revolutions do occur in mathematics. 
Usually they occur not because theorems are incorrect but because the 
assumptions they are based on are judged to be too restrictive, too loose, too 
imprecise, or not close enough to reality. 

A hypothesis or conjecture (the words are synonymous) is a mathematical 
statement that has not been proved yet, but has substantial evidence in its 
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favor. The evidence may come from similar but weaker theorems, empirical 
observations or computer experiments. Nevertheless, in mathematics a fact 
can never be proven by empirical evidence, plausibility, or a statistical test. 
This is a rule that distinguishes mathematics from the empirical sciences 
including physics, biology, and chemistry.

T H E  C H O I C E  O F  E Q U A T I O N S  was necessarily a matter of individual 
taste and preference. Some equations are almost obligatory, such as Einstein’s 
equation E = mc2, probably the most famous equation of all. Other equations 
will be unfamiliar to all but the most savvy readers, such as the Continuum 
Hypothesis. Here are some of the criteria I have used to decide what makes 
an equation great.

1.	 It is surprising. A great equation tells us something that we did not know 
before. It may look like a work of alchemy, transforming one quantity 
into another one that at first seems completely different, yet every step 
can be explained and justified. The only magic is in the human mind that 
can discover such connections. 

2.	 It is concise. A great equation has the spare aesthetic of Japanese 
calligraphy; it contains nothing but the essentials. It says something 
simple and powerful. 

3.	 It is consequential. I discarded several equations that I consider to 
be beautiful, inspiring mathematics—but which in the end have 
significance only for a few cognoscenti. The equations that make the 
deepest impression are the ones that revolutionize mathematics, change 
our view of the world, or change the material possibilities of our lives. 

4.	 It is universal. One of the great attractions of math is that an equation 
proven today will remain true forever. It is not subject to the whims of 
fashion, it is the same across the globe, and it cannot be censored or 
legislated. 

Some of the equations presented here are not mathematical theorems, 
but physical “laws” or theories, for example, Maxwell’s equations. Physical 
theories are generally confirmed by induction from data, or the “scientific 
method,” rather than by deduction from a set of axioms. Unlike mathematical 
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theorems, they are subject to empirical evidence and statistical testing,  
and occasionally, when more sensitive experiments come along, they are 
proved wanting.

The fact is that mathematics has two faces. First, it is a body of knowledge 
in its own right; and second, it is a language for expressing knowledge 
about the universe. If you look at equations merely as a means of conveying 
scientific information, then you are missing the way that mathematics can 
unbind our mental straitjackets. If you look at equations only as abstract 
nuggets of wisdom, then you are missing the subtle guidance nature gives us 
to ask the “right” questions. 

L E O P O L D  K R O N E C K E R ,  a nineteenth-century German mathematician, 
once said “God created the integers; all else is the work of man”. Although 
it is not entirely clear how literally one should take his witticism, historically 
he is far from alone in suggesting a divine origin for mathematics. In ancient 
Mesopotamia, it was a gift from Nisaba, the patron goddess of scribes. 
“Nisaba, the woman radiant with joy, the true woman, the scribe, the lady 
who knows everything, guides your fingers on the clay,” wrote a scribe in the 
twentieth century bc. “Nisaba generously bestowed upon you the measuring 
rod, the surveyor’s gleaming line, the yardstick, and the tablets which confer 
wisdom.” On Babylonian mathematical tablets, the solution to a problem 
was never complete until the solver wrote, “Praise Nisaba!” at the end.

According to the ancient Chinese, the originator of mathematics was Fu 
Xi, the legendary first emperor of China. He is often depicted holding a 
carpenter’s square. “Fu Xi created the eight trigrams in remote antiquity to 
communicate the virtues of the gods,” wrote the third-century mathematician 
Liu Hui. In addition, he says, Fu Xi “invented the nine-nines algorithm to 
coordinate the variations in the hexagrams.” The “trigrams” and “hexagrams” 
are the basic units of Chinese calligraphy; thus, in a loose sense, Fu Xi is being 
credited with the invention of writing, while, the “nine-nines algorithm” 
means the multiplication table. Thus, mathematics was not only divinely 
inspired, but was invented at the same time as written language.

We can already discern in these accounts three distinct branches of 
mathematics, which have continued to flow abundantly over the centuries 
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since then. The first branch is arithmetic or algebra, the science of quantity; 
the second is geometry, the science of shape; and the third is applied 
mathematics, the science of translating mathematics into solutions to 
concrete problems of engineering, physics, and economics. 

A fourth wellspring is not apparent in the above quotes,  and that is the 
science of the infinite—the analysis of both infinitely large and infinitely 
small quantities, which are essential to understand any process of continuous 
motion or change. Mathematicians simply call this branch of mathematics 
“analysis,” even though the rest of the world interprets this word to mean 
something quite different.

Thus, I consider the four main tributaries of mathematics to be Algebra, 
Geometry, Applied Mathematics, and Analysis. All four of them mingle 
together and cooperate in a most wonderful way, and witnessing this 
interaction is one of the great joys of being a mathematician. Nearly every 
mathematician finds himself or herself drawn more to one of these tributaries 
than the others, but the beauty and power of the subject undoubtedly derives 
from all four. For that reason, the four chapters in this book each have a 
theme, or “storyline” running throughout, relating to the evolution of the four 
branches over the ages.





introduct ion



the abacist versus the algorist

One afternoon �in Rio de Janeiro, the Nobel Prize-winning physicist Richard 
Feynman was eating dinner in his favorite restaurant. It wasn’t actually 
dinnertime yet, so the dining room was quiet … until the abacus salesman 
walked in. The waiters, who were presumably not interested in buying an abacus, 
challenged the salesman to prove that he could do arithmetic faster than their 
customer. Feynman agreed to the challenge.

At first, the contest wasn’t even close. On the addition problems, Feynman 
wrote, the abacus salesman “beat me hollow.” He would have the answer before 
Feynman even finished writing down the numbers. But then the salesman 
started getting cocky. He challenged Feynman to multiplication problems. 
Feynman still lost to the abacus, but not by as much. The salesman, not satisfied 
with his narrow margin of victory, challenged Feynman to harder and harder 
problems, and got more and more flustered. Finally he played his trump card. 
“Raios cubicos!” the salesman said. “Cube roots!”

Obviously, by this point the competition was more about pride than about 
selling an abacus. It’s difficult to imagine why a restaurant manager would 
ever need to compute a cube root. But Feynman agreed, provided that the 
waiters, who were watching the competition and enjoying it immensely, 
would choose the number. The number they picked was 1729.03.

The abacist set to work with a passion, hunching over the abacus, his fingers 
flying too fast for the eye to follow. Meanwhile, Feynman writes, he was just 
sitting there. The waiters asked him what he was doing, and he tapped his 
head: “Thinking!” Within a few seconds, Feynman had written down five 
digits of the answer (12.002). After a while, the abacus salesman triumphantly 
announced “12!” and then a few minutes later, “12.0!” By this time Feynman 
had added several more digits to his answer. The waiters laughed at the 
salesman, who left in humiliation, beaten by the power of pure thought.

Like all good tales, Feynman’s duel with the abacist has many layers of 
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meaning. On the most superficial level, it is a story about genius; the Nobel 
Prize winner beating the machine. However, Feynman’s intention when he 
told this story about himself was quite different. He was not a boastful man. 
In the context of his book, the point of the story was that ordinary people—
not Nobel Prize winners, not geniuses—could do just the same thing as he 
did, with a little bit of number sense and mathematical knowledge. There 
were two secrets behind his seemingly magical feat. First, he needed to know 
that 1728 was a perfect cube: 123 = 1728 (not common knowledge, perhaps, 
but it’s something most physicists would be aware of, because a cubic foot is 
123 or 1728 cubic inches.) And he needed to know a famous equation from 
calculus, called Taylor’s formula—a very general approximation method that 
allows you to go from the exact equation:

to the approximate equation: 

Equations are the lifeblood of mathematics and science. They are the brush 
strokes that mathematicians use to create their art, or the secret code that they 
use to express their ideas about the universe. That is not to say that equations 
are the only tool that mathematicians use; words and diagrams are important, 
too. Nevertheless, when push comes to shove—for instance, when they have 
to compute the cube root of 1729.03—equations convey information with an 
economy and precision that words or abaci can never match.

The rest of the world, outside of science, does not speak the language of 
equations, and thus a vast cultural gap has emerged between those who 
understand them and those who do not. This book is an attempt to build 
a bridge across that chasm. It is intended for the reader who would like to 
understand mathematics on its own terms, and who would like to appreciate 
mathematics as an art. Surely we would not attempt to discuss the works 
of Rembrandt or Van Gogh without actually looking at their paintings. 
Why, then, should we talk about Isaac Newton or Albert Einstein without 
exhibiting their “paintings”? The following chapters will try to explain in 
words—even if words are feeble and inaccurate—what these equations mean 
and why they are justly treasured by those who know them. 
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Let's go back now to Richard Feynman and that abacus salesman, because 
there is more to say about them. In all likelihood, neither of them knew that 
they were playing out a scene that had already been enacted centuries before, 
when Arabic numerals first arrived in Europe.

When the new number system appeared around the beginning of the 
thirteenth century, many people were deeply suspicious of it. They had to learn 
nine new and unfamiliar symbols: 1, 2, 3, 4, 5, 6, 7, 8, and 9—or, to be more 
precise, they had to learn the somewhat distorted thirteenth-century versions 
thereof. The new symbols looked to some people like occult runes, instead of 
the nice solid Roman letters (I, V, X, etc.) they were accustomed to. To make 
things worse, they were Arabic—not even Christian—which made them appear 
even more suspicious to a deeply religious society. And finally, they included an 
innovation that was especially hard to grasp: the number zero, a something that 
meant nothing. 

Nevertheless, Arabic numbers had an undeniable power. Unlike Roman 
numerals, which were useful for writing numbers but impractical for 
calculating with them, the decimal place-value system made it possible to 
do both. In a sense, Arabic numbers democratized mathematics. In many 
ancient societies, only a specially trained class of scribes could do arithmetic. 
With decimal notation, you did not need special training or special tools, only 
your brain and a pen.

The struggle between the old and new number systems went on for a very 
long time—well over two centuries. And, in fact, open competitions were 
held between abacists (people who used mechanical tools to do arithmetic) 
and algorists (people who used the new algorithmic methods). So Feynman 
and the abacus salesman were re-fighting a very old duel!

W E  K N O W  H O W  the battle ended. Nowadays, everyone in Western 
society uses decimal numbers. Grade school students learn the algorithms 
for adding, subtracting, multiplying, and dividing. So clearly, the algorists 
won. But Feynman’s story shows that the reasons may not be as simple as you 
think. On some problems, the abacists were undoubtedly faster. Remember 
that the abacus salesman “beat him hollow” at addition. But the decimal 
system provides a deeper insight into numbers than a mechanical device 
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does. So the harder the problem, the better the algorist will perform. As 
science progressed during the Renaissance, mathematicians would need to 
perform even more sophisticated calculations than cube roots. Thus, the 
algorists won for two reasons: at the high end, the decimal system was more 
compatible with advanced mathematics; while at the low end, the decimal 
system empowered everyone to do arithmetic.

But before we start feeling too smug about our “superior” number system, 
the tale offers several cautionary lessons. First is a message that is far from 
obvious to most people: There are many different ways to do mathematics. 
The way you learned in school is only one of numerous possibilities. Especially 
when we study the history of mathematics, we find that other civilizations 
used different notations and had different styles of reasoning, and those styles 
often made very good sense for that society. We should not assume they are 
“inferior.” An abacus salesman can still beat a Nobel Prize winner at addition 
and multiplication.

Feynman’s tale exemplifies also how mathematical cultures have collided 
many times in the past. Often this collision of cultures has benefited both 
sides. For instance, the Arabs didn’t invent Arabic numbers or the idea of 
zero—they borrowed them from India.

Finally, we should recognize that the victory of the algorists may be only 
temporary. In the present era, we have a new calculating device; it’s called the 
computer. Any mathematics educator can see signs that our students’ number 
sense, the inheritance bequeathed to us by the algorists, is eroding. Students 
today do not understand numbers as well as they once did. They rely on the 
computer’s perfection, and they are unable to check its answers in case they 
type the numbers in wrong. We again find ourselves in a contest between two 
paradigms, and it is by no means certain how the battle will end. Perhaps our 
society will decide, as in ancient times, that the average person does not need 
to understand numbers and that we can entrust this knowledge to an elite 
caste. If so, the bridge to science and higher mathematics will become closed 
to many more people than it is today.
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�In the modern world,
mathematics is an impressively unified subject. The same equations, 

such as a2 + b2 = c2, will elicit recognition and understanding in any 

country of the world, from Europe to Asia to Africa to the Americas.

But it was not always that way. Looking back through the history of 

mathematics, especially in the ancient world, we see a great diversity 

of styles and reasons for doing mathematics. During this period, 

mathematics gradually evolved out of its origins in surveying, tax 

collecting, building, and astronomy to become a distinct subject. In 

Egypt and Mesopotamia, arithmetic and geometry were simply part 

of the scribe’s general education. From the papyri and cuneiform 

tablets that have survived, it appears that mathematics was taught as a 

collection of rules, with very little in the way of explanation.

In ancient Greece, on the other hand, rote calculation took a back 

seat to philosophical contemplation. The Greek philosophers, starting 

with Pythagoras and Plato, held an exalted view of mathematics, which 

they saw as a science of pure reason that could penetrate behind the 

illusory appearance of the physical world. In Euclid’s Elements, all 

of geometry is deduced from a very short list of (supposedly) self-

evident facts, or axioms. This style of deductive reasoning gave birth to 

modern mathematics and even extended its influence to other human 

endeavors. (Recall the opening words of the American Declaration of 
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Independence: “We hold these truths to be self-evident …”; the author, 

Thomas Jefferson, was laying out in true Euclidean fashion the axioms 

on which a new society would be based.)

In India, mathematics or ganita (calculation) was subservient to 

astronomy for many centuries, and only came into its own around 

the ninth and tenth centuries ad. Nevertheless, several important 

discoveries originated in India—foremost among them the decimal 

number system we use today. In China, the fortune of mathematics 

or suan shu (number art) waxed and waned over the centuries. In the 

Tang dynasty (618–907 ad) it was a prestigious subject that all scholars 

had to study; on the other hand, in the Ming dynasty (1368–1644) it 

was categorized as xiaoxue (lesser learning)! The change in attitude 

may have something to do with why Chinese mathematics—which 

was previously superior to contemporary European mathematics—

stagnated after the 1300s, precisely the period when Western 

mathematics began to take off.

Finally, the Islamic world occupied a unique position in mathematics 

history, as the inheritor of two distinct traditions (Greek and Indian) 

and the transmitter of those traditions—augmented by the new 

discoveries of Islamic mathematicians—to western Europe. Strangely, 

it was only in western Europe that the decisive transition to modern 

mathematics occurred … but that is a subject for later.
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One plus one equals two: perhaps the most elementary formula of all. 
Simple, timeless, indisputable … But who wrote it down first? Where did 
this, and the other equations of arithmetic, come from? And how do we 
know they are true? The answers are not quite obvious.

One of the surprises of ancient mathematics is that there is 
not much evidence of the discussion of addition. Babylonian clay 
tablets and Egyptian papyri have been found that are filled with 
multiplication and division tables, but no addition tables and no  
“1 + 1 = 2.” Apparently, addition was too obvious to require explanation, 
while multiplication and division were not. One reason may be the simpler 
notation systems that many cultures used. In Egypt, for instance, a number 
like 324 was written with three “hundred” symbols, two “ten” symbols, and 
four “one” symbols. To add two numbers, you concatenated all their symbols, 
replacing ten “ones” by a “ten” when necessary, and so on. It was very much 
like collecting change and replacing the smaller denominations now and 
then with larger bills. No one needed to memorize that 1 + 1 = 2, because the 
sum of | and | was obviously ||.

In ancient China, arithmetic computations were performed on a “counting 
board,” a sort of precursor of the abacus in which rods were used to count 

 
why we believe in arithmetic
the world’s simplest equation



21

1 + 1 = 2

E Q U A T I O N S  O F  A N T I Q U I T Y

ones, tens, hundreds, and so on. Again, addition was a straightforward 
matter of putting the appropriate number of rods next to each other and 
carrying over to the next column when necessary. No memorization was 
required. However, the multiplication table (the “nine-nines algorithm”) was 
a different story. It was an important tool, because multiplying 8 × 9 = 72 was 
faster than adding 8 to itself nine times.

Another exceedingly important notational difference is that not a single 
ancient culture—Babylonian, Egyptian, Chinese, or any other—possessed 
a concept of “equation” exactly like our modern concept. Mathematical 
ideas were written as complete sentences, in ordinary words, or sometimes 
as procedures. Thus it is hazardous to say that one culture “knew” a certain 
equation or another did not. Modern-style equations emerged over a period 
of more than a thousand years. Around 250 ad, Diophantus of Alexandria 
began to employ one-letter abbreviations, or what mathematical historians 
call “syncopated” notation, to replace frequent words such as “sum,” “product,” 
and so on. The idea of using letters such as x and y to denote unknown 
quantities emerged much later in Europe, around the late 1500s. And the 
one ingredient found in virtually every equation today—an “equals” sign—
did not make its first appearance until 1557. In a book called The Whetstone of 

A simple interpretation is this: On the number line, 2 is 
the number that is one step to the right of 1. However, 
logicians since the early 1900s have preferred to define 
the natural numbers in terms of set theory. Then the 
formula states (roughly) that the disjoint union of any  

two sets with one element is a set with two elements. 
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Wytte, by Robert Recorde, the author eloquently explains: “And to avoide the 
tediouse repetition of these woordes: is equal to: I will sette as I doe often in 
woorke use, a paire of paralleles, or Gemowe lines of one lengthe, thus: ====, 
because noe 2 thynges can be moare equalle.” (The archaic word “Gemowe” 
meant “twin.” Note that Recorde’s equals sign was much longer than ours.)

So, even though mathematicians had implicitly known for millennia that  
1 + 1 = 2, the actual equation was probably not written down in modern 
notation until sometime in the sixteenth century. And it wasn’t until the 
nineteenth century that mathematicians questioned our grounds for 
believing this equation.

T H R O U G H O U T  T H E  1 8 0 0 s ,  mathematicians began to realize that 
their predecessors had relied too often on hidden assumptions that were 
not always easy to justify (and were sometimes false). The first chink in 
the armor of ancient mathematics was the discovery, in the early 1800s, 
of non-Euclidean geometries (discussed in more detail in a later chapter). 
If even the great Euclid was guilty of making assumptions that were not 
incontrovertible, then what part of mathematics could be considered safe?

In the late 1800s, mathematicians of a more philosophical 
bent, such as Leopold Kronecker, Giuseppe Peano, David 
Hilbert, and Bertrand Russell, began to scrutinize the 
foundations of mathematics very seriously. What can we 
really claim to know for certain, they wondered. Can we 
find a basic set of postulates for mathematics that can be 
proven to be self-consistent?

Kronecker, a German mathematician, held the opinion that the natural 
numbers 1, 2, 3, … were God-given. Therefore the laws of arithmetic, such as 
the equation 1 + 1 = 2, are implicitly reliable. But most logicians disagreed, 
and saw the integers as a less fundamental concept than sets. What does the 
statement “one plus one equals two” really mean? Fundamentally, it means 
that when a set or collection consisting of one object is combined with a 
different set consisting of one object, the resulting set always has two objects. 
But to make sense of this, we need to answer a whole new round of questions, 
such as what we mean by a set, what we know about them and why. 

Opposite  The key to 
arithmetic: an Arabic  
manuscript, by Jamshid  
al-Kashi, 1390–1450.
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In 1910, the mathematician Alfred North Whitehead and the 
philosopher Bertrand Russell published a massive and dense three-
volume work called Principia Mathematica that was most likely  
the apotheosis of the attempts to recast arithmetic 
as a branch of set theory. You would not want to 
give this book to an eight-year-old to explain why  
1 + 1 = 2. After 362 pages of the first volume, Whitehead 
and Russell finally get to a proposition from which, they 
say, “it will follow, when arithmetical addition has been 
defined, that 1 + 1 = 2.” Note that they haven’t actually 
explained yet what addition is. They don’t get around to that until volume 
two. The actual theorem “1 + 1 = 2” does not appear until page 86 of the 
second book. With understated humor, they note, “The above proposition is 
occasionally useful.”

It is not the intention here to make fun of Whitehead and Russell, because 
they were among the first people to grapple with the surprising difficulty 
of set theory. Russell discovered, for instance, that certain operations with 

sets are not permissible; for example, 
it is impossible to define a “set of all 
sets” because this concept leads to a 
contradiction. That is the one thing that is 
never allowed in mathematics: a statement 
can never be both true and false.

But this leads to another question. 
Russell and Whitehead took care to avoid 
the paradox of the “set of all sets,” but can 
we be absolutely sure that their axioms will 
not lead us to some other contradiction, 
yet to be discovered? That question was 
answered in surprising fashion in 1931, 
when the German logician Kurt Gödel, 
making direct reference to Whitehead 
and Russell, published a paper called 
“On formally undecidable propositions 
of Principia Mathematica and related 

Below A clay tablet 
impressed with cuneiform 
script details an algebraic-
geometrical problem,  
ca. 2000–1600 bc.
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systems.” Gödel proved that any rules for set theory that were strong enough 
to derive the rules of arithmetic could never be proven consistent. In other 
words, it remains possible that someone, someday, will produce an absolutely 
valid proof that 1 + 1 = 3. Not only that, it will forever remain possible; there 
will never be an absolute guarantee that the arithmetic we use is consistent, 
as long as we base our arithmetic on set theory.

M A T H E M A T I C I A N S  D O  N O T  actually lose sleep over the 
possibility that arithmetic is inconsistent. One reason is probably that most 
mathematicians have a strong sense that numbers, as well as the numerous 
other mathematical constructs we work with, have an objective reality that 
transcends our human minds. If so, then it is inconceivable that contradictory 
statements about them could be proved, such as 1 + 1 = 2 and 1 + 1 = 3. 
Logicians call this the “Platonist” viewpoint. 

“The typical working mathematician is a Platonist on weekdays and a 
formalist on Sundays,” wrote Philip Davis and Reuben Hersh in their 1981 
book, The Mathematical Experience. In other words, when we are pinned 
down we have to admit we cannot be sure that mathematics is free from 
contradiction. But we do not let that stop us from going about our business. 

Another point to add might be that scientists who are not mathematicians 
are Platonists every day of the week. It would never even occur to them to 
doubt that 1 + 1 = 2. And they may have the right of it. The best argument 
for the consistency of arithmetic is that humans have been doing it for 5000 
years and we have not found a contradiction yet. The best argument for its 
objectivity and universality is the fact that arithmetic has crossed cultures 
and eras more successfully than any other language, religion, or belief 
system. Indeed, scientists searching for extraterrestrial life often assume that 
the first messages we would be able to decode from alien worlds would be 
mathematical—because mathematics is the most universal language there is.

We know that 1 + 1 = 2 (because it can be proved from generally accepted 
principles of set theory, or else because we are Platonists). But we don’t know 
that we know it (because we can’t prove that set theory is consistent). That 
may be the best answer we will ever be able to give to the eight-year-old who 
asks why.
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Entire books have been written about the concept of the number zero. This 
number was a latecomer to arithmetic, perhaps because it is difficult to 
visualize zero cubits or zero sheep. Even today, if you pick up a children’s 
counting book, you will probably not find a page devoted to zero.

The number zero has two different interpretations, one of them a good 
deal more sophisticated than the other. First, in numbers like 2009 or 90,210, 
zero is used as a symbol to denote an empty place. That is the function of the 
zeros. Without the numeral zero, we would not be able to tell those numbers 
apart from 29 or 921. In a place-value number system, the meaning of “2” 
depends on where it is; in the number 29 it denotes two tens, but in the 
number 2009 it denotes two thousands.

Of course cultures that did not use a place-value system, such as ancient 
Egypt or Rome, did not have this problem and did not need a symbol for an 
empty place. The Roman numeral mmix (2009) is easy to distinguish from 
xxix (29). Thus it is not surprising that the notion of zero did not arise 
in those societies. The Babylonians, however, did use a place-value number 
system, and yet for many centuries it did not occur to them to employ a mark 
to denote an empty place. Apparently the ambiguity between 2009 and 29 
did not trouble them—perhaps because it is usually apparent from context 

 
resisting a new concept
the discovery of zero
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which number is intended. Even today the same thing is true. If someone is 
telling you what year it is, you expect a number like 2009; if they are telling 
you how old they are, 29 is more reasonable.*

Only around 400 bc, near the end of Babylonia’s independent existence 
and some 1500 years after the cuneiform number system had first come into 
use, did scribes start to use two vertical wedges (∧∧) to denote an empty 
place. This was the first appearance in history of a symbol that meant zero, 
but it is clear that the Babylonians thought of it only as a placeholder and 
not as a number itself.

T H E  S E C O N D ,  �more subtle, concept of zero as an actual entity (as 
implied by the equation 1 – 1 = 0) arose in India. It appears for the first time 
in 628 ad, in a book called Corrected Treatise of Brahma, by Brahmagupta. 

* The Babylonians actually used a number system based on powers of 60, rather than powers of 10. 
This does not alter the basic problem of ambiguity. For example, a Babylonian scribe would not be able 
to distinguish 1501 (i.e., 25 × 60 + 1) from 90,001 (i.e., 25 × 602 + 1). Both numbers would be written as 
25, 1.

On the number line, zero is the number 
that is one step to the left of 1.
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As is the case for many ancient mathematicians, little information is 
available about Brahmagupta’s life. He was born in 598 in north central 
India, and was a member of a mathematical school (in the sense of a loosely 
knit community of scholars) in Ujjain. He lived not long after the end of the 
Gupta dynasty (ca. 320–550), a period of prosperity that is often considered 
a golden age of Indian culture, when much classical Sanskrit literature 
was written and when astronomers developed very accurate predictions of 
eclipses and planetary motions.

One thing that stands out clearly in Brahmagupta’s work is his  
derisory attitude toward his rivals. The very title, Corrected Treatise of  
Brahma, is an implicit criticism of an earlier astronomical work. Brahmagupta 
makes comments such as this about his predecessors: “One is not a master 
through the treatises of Aryabhata, Visnucandra, etc., even when [they  
are] known [by heart]. But one who knows the calculations of Brahma 
[attains] mastery.” †

Arrogant though he may have been, Brahmagupta clearly understood the 
nature of zero. He wrote, “[The sum] of two positives is positive, of two 
negatives negative; of a positive and a negative [the sum] is their difference; 
if they are equal it is zero.” Thus, zero is obtained by adding a positive number 
to a negative of equal magnitude; for example, 1 + (–1). This is what is meant 
by the modern notation 1 – 1. Further, Brahmagupta wrote that adding zero 
does not change the sign of a number, that 0 + 0 = 0, and that any number 
times zero gives zero. However, he is not sure about division by zero. Rather 
tautologically, he writes, “A negative or a positive divided by zero has that as 
its divisor,” and he states incorrectly that “a zero divided by a zero is zero.” 
Modern mathematicians would say that any division by zero is undefined.

It is noteworthy that zero goes hand in hand in Brahmagupta’s work with 
negative numbers. Indeed, the resistance to zero may be explained by the 
even greater difficulty of visualizing negative cubits or negative sheep. For 
centuries after Brahmagupta, mathematicians continued to avoid negative 
numbers in their formulas. For example, the solution of quadratic equations 
and cubic equations was made unduly complicated by mathematicians’ 

† Brackets inserted by mathematical historian Kim Plofker, who translated the work.
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avoidance of negatives. They perceived the need for several different methods 
of solution, which we now condense into one formula.

F O R  M O D E R N  M A T H E M A T I C S  it is difficult to overstate the 
importance of zero. It is what mathematicians call an identity element, 

because when added to any number it does not change 
that number. Identity elements are as important to 
mathematics as synonyms are to literature. No one would 
question why we need both of the words “happy” and 
“delighted.” They allow us to say essentially the same 
thing in different ways, possibly revealing slightly different 
nuances. The availability of zero gives mathematicians 
the same flexibility. An expression x can be written as x 

+ 0, and from there it can be rewritten as x + 1 – 1 or in many other ways, 
depending on the requirements of the problem.

In the nineteenth and twentieth centuries, 
mathematicians discovered many useful 
algebraic structures besides integers and 
real numbers, and useful operations besides 
ordinary addition and multiplication. For 
example, computers use modular arithmetic; 
cryptologists use multiplication on elliptic 
curves; and quantum physicists add and 
multiply vectors in Hilbert space. All of these 
operations are variations on the fundamental 
notions of “plus” and “times,” but they are 
sometimes very far removed from the addition 
and multiplication we learn in school. The 
one thing that they all have in common is 
an identity element. Thus, Brahmagupta’s 
contribution to mathematics—the idea of the 
number zero—is alive and well, even though 
he might have some trouble recognizing it.

Below Brahmagupta’s 
mathematical 

achievements included 
contributions to the field  

of astronomy, such as  
his observation that the 

Earth was spherical.
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the square of the hypotenuse
the pythagorean theorem

For many mathematics students, the first name they encounter in a 
mathematics course is the name of Pythagoras. The Pythagorean Theorem 
states that in any right triangle (that is, a triangle containing one right angle) 
the sum of the squares of the two shorter sides (a and b) equals the square 
of the longest side (c), called the hypotenuse. The formula, memorized by 
centuries of students, is a2 + b2 = c2.

The Pythagorean Theorem is famous enough that it has appeared often in 
popular culture. In the movie The Wizard of Oz, the scarecrow memorably 
botches the theorem after the wizard awards him a diploma, exclaiming, 
“The sum of the square roots of any two sides of an isosceles triangle is equal 
to the square root of the remaining side. Oh, joy, oh, rapture. I’ve got a brain!” 
In Gilbert and Sullivan’s musical The Pirates of Penzance, the Major General 
demonstrates a somewhat better command of mathematics when he sings, 
“I’m very well acquainted, too, with matters mathematical … With many 
cheerful facts about the square of the hypotenuse.”

Who was Pythagoras, and what did he have to do with the theorem that 
bears his name? As it turns out, the answer is rather complicated. In all 
likelihood, Pythagoras neither discovered nor proved “his” theorem. It is long 
past time for the theorem to be given a more accurate name.
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The letters a and b represent the legs (short sides) of a right 
triangle, and c represents the hypotenuse (long side).

Pythagoras was born around 569 bc on the island of Samos, off the coast 
of Ionia (modern-day Turkey). According to legend, he spent years absorbing 
the wisdom of the ancients in Egypt, and perhaps Babylonia, maybe even 
India for that matter (when you are a legend, all things are possible). After 
returning home, he then emigrated permanently to the Italian city-state of 
Croton. There he founded a secret society known as the Pythagoreans, which 
for a period dominated the cultural and civic life of Croton.

As cults go, the Pythagoreans were only mildly eccentric. Pythagoras 
preached the virtues of temperance, reverence for one’s elders, and education. 
He advocated monogamy, which must have come as a shock to a society 
whose gods were serial adulterers. He forbade the consumption of animal 
flesh, because an animal might have the soul of a friend or an ancestor. In 
addition, he prohibited the eating of beans, possibly because human souls 
could migrate to these plants as well. 

All in all, Pythagoras could be seen as a rather typical charismatic leader of 
a mystery cult. But what distinguishes the Pythagoreans, at least to a historian 
of science, is their alleged role as the founders of the Greek traditions of 
mathematics and philosophy. Pythagoras believed that everything in the 
world was governed by numbers.
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Pythagorean philosophy included a great deal of numerology, or number 
mysticism, some of which appears laughable to modern eyes. For example, 
odd numbers were thought to be masculine and even numbers feminine. 
But their fascination with numbers did lead the Pythagoreans to some 
concepts that remain quite relevant to the modern subject of number 
theory. For instance, they discovered what they called “perfect numbers” 
(numbers that are equal to the sum of all their proper divisors). The 
first two perfect numbers are 6 (which equals 1 + 2 + 3) and 28 (which 
equals 1 + 2 + 4 + 7 + 14). At the time of writing, 47 perfect numbers are 
known, and as computers get faster and faster, they turn up new ones every  
few years.

A N  E V E N  M O R E  F R U I T F U L  concept was that of prime numbers: that 
is, numbers that have only themselves and 1 as divisors. The first few primes 
are 2, 3, 5, 7, and 11. Numbers that are not prime are called composite (for 
example, 6 is the product of two primes, 2 × 3). 

Without prime numbers, number theory would be a relatively barren 
subject. With them, it is endlessly fascinating. The ancient Greeks proved 
that the primes never end; however, the details of how they are interspersed 
among the integers remain very mysterious. Primes can be used both to solve 
whole-number equations and to show they are unsolvable; Fermat’s Last 
Theorem is but one example, as will be discussed in a later chapter. And 
finally, primes are essential for modern-day cryptography, much of which 
is based on the idea that it is hard to find the prime factors of a very large 
composite number—say, one with a few hundred digits.

Above Right triangles: general (left) and particular (right).
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Among the other mathematical 
discover ies  attr ibuted to the 
Pythagoreans were the Pythagorean 
theorem, and perhaps more importantly, 
a proof of the Pythagorean theorem; 
the principle that musical chords are 
formed by vibrations whose frequencies 
form simple whole-number ratios (for 
instance, an octave is created by the ratio 
2:1, a fifth is created by the ratio 3:2, and 
a fourth is created by the ratio 4:3); the 
belief that the motions of the planets 
were governed by similar integer ratios 
—according to legend, Pythagoras could 
actually hear the harmonies that the 
planets produced, known as “the music of 
the spheres”; and finally the existence of 
irrational numbers.

Do these claims hold water? 
First, one of the few things that can 

be stated with absolute certainty about 
Pythagoras is that he did not discover 
the Pythagorean theorem. A famous Babylonian tablet known as Plimpton 

322, dating to roughly 1800 bc, contains a list of what 
we would now call Pythagorean triples: sets of integers 
(such as 3–4–5 or 5–12–13) that form the sides of a 
right triangle. (As you can readily check, 32 + 42 = 52 and  
52 + 122 = 132.) As Pythagoras supposedly studied 
in Babylonia, one may surmise that he learned the 

Pythagorean formula there.
It would be much more interesting if Pythagoras actually discovered a 

proof of the Pythagorean theorem, in other words a demonstration from 
elementary principles that the formula a2 + b2 = c2 holds for all right triangles. 
The Babylonians and Egyptians were apparently not interested in such 
mathematical deductions; their extant texts are long on procedures and short 

Above right Pythagorean  
Theorem described in  

an early Arab book.
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on explanations. (An explanation, for the Babylonians, is “Behold, it is done,” 
followed by “Praise Nisaba.”)

In the two centuries that followed Pythagoras, ancient Greece did 
develop a rich tradition of deductive mathematics, unprecedented in world 
mathematics. It culminated in Euclid’s Elements, written around 300 bc. 
The first book of the Elements includes a careful proof of the Pythagorean 
theorem. It would be amazing, and wonderful, if the proof could be traced to 
the very beginning of ancient Greek mathematics. 

O N C E  Y O U  H A V E  A C C E P T E D ,  �or proved, that the equation a2 + b2 = 
c2 holds for every right triangle (and not just for convenient ones like 3–4–5 
or 5–12–13), you run straight into a conundrum. The simplest right triangle 
of all is the one created by cutting a square in two parts along the diagonal. 
This triangle has two legs of equal length, which can be assumed to be 1 unit 
and 1 unit. Then, according to the Pythagorean theorem, the length of the 
hypotenuse, c units, obeys the equation c2 = 2.

But according to Pythagorean dogma, everything in the universe is 
supposed to be governed by whole numbers. So this mysterious length c 
should be expressible as a ratio of integers, say p/q. It’s easy to find some 
“close calls.” For example 7/5 is just a little too small, because (7/5)2 = 49/25 = 
1.96, and 17/12 is just a little too big, because (17/12)2 = 289/144 ≈ 2.007. Thus 
you can say that length c is between 7/5 and 17/12 … But try as you might, you 
won’t be able to find whole numbers p and q such that (p/q)2 = 2. 

You may wonder how I can be so sure. Let’s assume that you could find a 
ratio p/q whose square is 2. Then p2 = 2q2, so p2 is an even number. Thus p is 
even, and so there is some whole number x such that p = 2x. Thus 4x2 = (2x)2 
= p2 = 2q2, so q2 = 2x2. Thus q is also an even number, and expressible as q = 2y. 
But then p/q = x/y, which means we have found smaller numbers x and y with 
the same ratio. But then we could apply the same argument to x and y, getting 
a ratio with even smaller numbers. And so the process would never end—we 
could never reduce the fraction to its lowest terms! This is an absurdity, and 
therefore the assumption that (p/q)2 = 2 must have been fallacious. This kind 
of proof is called a reductio ad absurdum, or proof by contradiction, and will be 
discussed further in Chapter 5.
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Nowadays, we have other ways of expressing the length of the  
hypotenuse, c. A standard 10-digit pocket calculator says that the length is 
1.414213562. But the Pythagoreans did not have a decimal notation system—
decimals would not come to Europe for another 1500 years! So they did not 
have the option of writing the answer this way. And anyway, 1.414213562 is 
still not the exact length. The square of this number is 1.999999998, not 2. 

A second way around this conundrum is to write c = √2. This is what 
is taught in school. The answer looks comfortingly exact … but it is also 
vacuous. It says that the number whose square is 2 is … the square root of 2. 
It tells us nothing that we didn’t already know!

In any event, the Pythagoreans lacked the √ notation, and surely would not 
have been satisfied by such a self-referential answer. So they literally had no 
way of writing down the length of the diagonal of a square. It was alogos, a 
concept that could not be expressed in words. Today we would say that it is 
an irrational number. (A rational number is one that can be written as a ratio 
of whole numbers, such as 7/5.) If the term “irrational” sounds a bit pejorative, 
that is no accident. For the Pythagoreans, if a number could not be expressed 
in words, it should not be expressed in words. The existence of alogos numbers 
should be kept as a mystery only for the deepest initiates. Legend has it 
that the first person who revealed the secret (possibly a Pythagorean named 
Hippasus) was drowned at sea as punishment.

This is a marvelous tale, but it is probably not true. It is unlikely that 
Pythagoras could have proved that the number √2 is alogos. The “proof 
by contradiction” technique, which lies at the heart of the argument, was 
introduced two generations after Pythagoras, by Zeno of Elea (a student of 
Parmenides, who is sometimes described as a Pythagorean but was not actually 
a member of the society).

Nowadays, historians place much less stock than they once did in the 
alleged accomplishments of Pythagoras and the Pythagoreans. There simply 
is no documentary evidence of it, while there is a great deal of evidence 
about the accomplishments of ancient Greek mathematicians who were not 
in the brotherhood. For instance, Theodorus of Cyrene, who also was not a 
Pythagorean, proved around 400 bc that the numbers we would call √3, √5, 
and so on up to √17 were also irrational. (The fact that he began with √3 
suggests that the irrationality of √2 was already accepted by this time.) 
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From the viewpoint of modern historians, it makes more sense to study 
the many documented advances of ancient Greek mathematicians who were 
not Pythagoreans, than to perpetuate unsubstantiated legends about the 
Pythagoreans. One modern historian, M.F. Burnyeat, 
argues that the legend of Pythagoras was deliberately 
fabricated by Plato’s successors in order to portray Plato as 
the heir to an ancient tradition.

There is one more good reason not to canonize 
Pythagoras. Science progresses much more rapidly when 
it is communicated openly than when it is shrouded in 
secrecy. As long as mathematics was hidden behind the 
veil of secrecy, it was impossible to separate genuine 
mathematics from bogus numerology. Once mathematics came out from 
behind the Pythagorean veil, the way was opened to new discoveries, such as 
those of Theodorus (and Eudoxus, Eratosthenes, Euclid, Archimedes, …). If 
we are celebrating ancient Greek mathematics, we should give most of the 
credit not to the secret cult of Pythagoras, but to the spirit of open inquiry 
that followed after its dispersal. 

It seems a shame, also, to attribute the Pythagorean theorem to one 
person, when it is one of the great universal theorems of mathematics. The 
Pythagorean formula was discovered independently, it seems, by nearly every 
ancient culture. In some sense, it seems to be an inevitable discovery for 
any mathematically inclined civilization. If “God created the integers,” as 
Kronecker said, perhaps he created the Pythagorean theorem too.

I N  C H I N A ,  �for instance, the Pythagorean formula was known as the gou-gu 
rule. In Chinese terminology, gou (leg) was the shorter side of a right triangle,  
and gu (thigh) was the longer side. (Compare this to the Western terminology 
where both sides are simply called legs.) The hypotenuse was called xian, or 
“lute string,” which may allude to the origins of the theorem in measuring 
distances with a stretched rope.

The gou-gu rule appears in the anonymously written Jiu Zhang Suan Shu, 
or Nine Chapters on the Art of Mathematics, a seminal work for Chinese 
mathematics that was as influential as Euclid’s Elements in the West. The 

Opposite Allegory of 
Arithmetic (1504) by 
Gregor Reisch, showing 
Pythagoras using an 
abacus on the right, while 
the Roman philosopher 
Ancius Boethius uses 
Arabic numerals and 
mathematical symbols.
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age of the Nine Chapters is unknown. Liu Hui, a commentator in the third 
century ad, strongly implies in his preface that the Nine Chapters existed 
before the Chinese emperor Qin Shi Huang ordered all books to be burned, 
in 213 bc. After Qin’s death, the Nine Chapters had to be reconstructed from 
memory. It is easy to imagine how imperfect this process was. Thus, as the 
work was passed down from generation to generation, a long tradition arose 
of improvements and comments on the original text.

Liu Hui’s annotation of the Nine Chapters was one of the best, and contains 
much material of his own. Liu, a self-taught mathematician, may perhaps be 
considered the first Chinese math geek; he studied the subject because he 
cared about it and not because it would advance his career in court. In his 
annotations we find many explanations of why the statements in the Nine 
Chapters are true, and in particular we find the first documented proof of the 
Pythagorean theorem outside of ancient Greece.

Liu’s argument is reminiscent of the equally ancient Chinese puzzle of 
tangrams, in which a small set of simple pieces is rearranged to produce a 
fantastic variety of figures. He starts with two squares made from the sides 
of the gou and the gu, and then dissects them and rearranges the pieces so 
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Below The gou-gu theorem. Liu Hui’s proof shows that 
the squares on the gu and the gou (ABED and BCGF) 
can be cut into smaller pieces and  
rearranged to form the square on  
the xian (ACJH).
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that they form a square on the xian. This kind of proof, called the “out-in” 
method, was used repeatedly by Liu and by other Chinese mathematicians. 
It is a much simpler proof to understand than the one in Euclid’s Elements.

I N  O N E  R E S P E C T ,  the history of the gou-gu theorem in China diverges 
dramatically from its counterpart in ancient Greece. As we have seen, in 
ancient Greece the Pythagorean theorem led to the discovery of irrational 
numbers, such as √2. Chinese mathematicians, on the other hand, never 
explicitly formulated the concept of irrationality. Some historians have 
attributed the different paths of Chinese and Greek mathematics to the 
greater “practicality” of the former, and have suggested that the Chinese 
were not so interested in abstract reasoning. However, Liu Hui had no 
aversion to abstract reasoning or to the “impractical” side of mathematics. 
Joseph Dauben, a leading historian of Chinese mathematics, believes that 
the explanation lies in the Chinese language itself, in which it is difficult to 
express a counter-factual assumption. Recall that the proof of irrationality 
of √2 begins with the counter-factual sentence, “Let’s assume that you 
could find a ratio p/q whose square is 2.” Presumably, an ancient Chinese 
mathematician would simply not have been able to make sense of this first 
step. How can a false assertion be used to justify a true theorem?

Such differences are, once again, a reminder that there is no unique 
correct approach to mathematics. Even in the twentieth century, a school of 
mathematics called constructivism maintained that proofs by contradiction 
should not be allowed. They would find the argument above for the 
irrationality of √2 to be completely unconvincing. Like the ancient Chinese, 
they would be more interested in the fact that √2 is computable. (In other 
words, there is a well-defined procedure for approximating it to any desired 
degree of precision.) The more things change, the more they stay the same.
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Besides computing the hypotenuse of a triangle, two other geometric 
problems seem to arise almost inevitably in any numerate civilization: 
finding the circumference and area of a circle. In contemporary notation, 
they are given by the closely related formulas C = 2πr and A = πr2. Here A 
represents the area of a circle of radius r, and π (read “pi”) is the most famous 
constant in mathematics, the number 3.1415926535…

The modern formulas tend to obscure the first wonderful fact about pi: the 
fact that the same constant appears in both formulas. They obscure the fact 
by making it too obvious. To appreciate what ancient mathematicians had 
to figure out, we should imagine that there is a number “pi-circumference” 
defined by the ratio of a circle’s perimeter to its diameter d, and a second 
number “pi-area” defined by the ratio of a circle’s area to its radius squared. 
Imagine that you don’t know that these two numbers are equal.

The first completely clear statement that the two problems are related 
comes, not surprisingly, in ancient Greek mathematics. In the third century 
bc, Archimedes wrote in his manuscript The Measurement of the Circle:

Proposition 1. The area of any circle is equal to the area of a right 
triangle in which one of the sides about the right triangle is equal to the 
radius, and the other to the circumference of the circle.

the circle game
the discovery of π
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Imagine cutting the circle into many wedges, each one indistinguishable 
from a triangle, so its area is half the base times the height of the wedge, as 
in the drawing on the next page. The height of each wedge is the radius of 
the circle, and the sum of all the bases is (roughly) the circumference of the 
circle. Thus the combined area of all the wedges is (roughly) half the radius 
times the circumference, and is also (roughly) equal to the area of the circle. 
The hard part of Archimedes’ argument was turning the rough equalities 
into exact equalities. Once this is done, it is fairly easy to show that “pi-
circumference” is the same as “pi-area.”

Archimedes’ Proposition 1 has been overshadowed by his Proposition 
3, where he proved that π lies between 3 1 ⁄ 7 and 3 10/71. But it is really 
Proposition 1 that gives birth to the concept of pi. Without it, you have 
two separate problems: how to compute areas and circumferences of circles. 
With it, you can replace them with a single problem: how to approximate 
the number pi. Proposition 3 is merely an elaboration of that theme.

As in the case of the Pythagorean theorem, ancient Chinese 
mathematicians were not far behind their Greek counterparts, if at all. 
Already in the Nine Chapters—which may predate Archimedes—we find 
the following problem: “Given a circular field, the circumference is 181 bu 

The irrational number π actually has two different meanings. First, 
it is the ratio of the area A of any circle to the square of its radius 
r. (That is, π = A/r2.) Second, it is the ratio of the circumference C 
of any circle to its diameter, d. (That is, π = C/d = C/2r.) Either one 
of these statements may be taken as a definition of π, and then 
the other statement becomes a theorem.
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and the diameter 60 1/3 bu. Tell: what is the area? … Rule: Multiplying half 
the circumference by the radius yields the area of the circle in [square] bu.” 
The third sentence (the “Rule”) is nothing more or less than Archimedes’ 
Proposition 1. Interestingly, the first sentence shows that the anonymous 
author thought that π = 3, a very primitive approximation. 

H O W E V E R ,  L I U  H U I ,  the third-century commentator on the Nine 
Chapters, had other ideas. To start with, he pointed out that the ratio of the 
perimeter of a hexagon to its diameter is equal to 3, and yet the perimeter of 
a circle is visibly larger than that of a hexagon. So the ancient method, based 
on π = 3, could not be right. “The difference between a polygon and a circle 
is just like that between the bow and its chord, which can never coincide.” 
Liu wrote. “Yet such a tradition has been passed down from generation to 
generation and no one cares to check it.”

To compute a more precise “circle rate,” his term for pi, Liu pushed out 
each side of the hexagon, to create a 12-sided polygon, and computed the 
perimeter of that. Then he repeated this procedure to obtain the perimeter 
of a 24-sided figure, a 48-sided figure, and a 96-sided figure. He also did the 
same procedure for a 12-sided polygon drawn outside the circle, a 24-sided 
polygon drawn outside the circle, and so on. In this way, he shows that:

 or 3.1408 < π < 3.1420

This is very comparable to Archimedes’ estimate:

 or 3.1407 < π < 3.1428

Above A circle cut into wedges, demonstrating Proposition 1.
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Archimedes computed his estimate in exactly the same way—starting with 
a hexagon and doubling the number of sides until he got to a 96-gon! It is 
amazing that these two great minds, separated by so many miles and so many 
years, came up with exactly the same idea. The only reason for the slight 
difference in their answers is that Liu has made more careful approximations 
along the way. (After the first step, the perimeters involve square roots, which 
had to be approximated by rational numbers.)

But Liu, unlike Archimedes, didn’t stop! He adds that the procedure can be 
continued all the way up to a 3072-sided polygon. He omits the calculations, 
but gives us the result:

 
or π ≈ 3.1416.

He has gotten four digits of pi correct! Liu was probably the first human 
being to find this now standard approximation to pi.

Curiously, Liu worked pi out to this accuracy once, but in all of his 
annotations to the other problems in the Nine Chapters, he employed the 
simpler approximation π ≈ 3.14. This inconsistency points out something 
very interesting about Liu’s own psychology. He must have realized that 
there would be no conceivable use for a more accurate approximation in any 
practical problem. Unless you have a laser interferometer (which didn’t exist 
back then), you can’t measure the diameter of a field to four decimal places, 
and so there is no point in using a “circle rate” with that degree of accuracy.

And yet he worked it out to four decimals anyway! He didn’t need to do 
it; he just wanted to satisfy his own curiosity. He was only the first of many 
math geeks (or perhaps more specifically pi geeks) over the centuries, who 

Above Liu Hui’s demonstration of his “circle rate.”
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have pushed the computation of pi to almost unfathomable lengths. Before 
the computer era, William Shanks computed 707 digits of pi, although he 
tragically made a mistake on the 527th digit, and all the later digits were 
wrong. Now, with the advent of computers, the record number of digits has 
been pushed beyond one trillion. 

T O  P E N E T R A T E  �this deep into the mysteries of pi, you need more than 
the relatively clumsy geometric approach of Archimedes and Liu. Around 
1500, an unknown Indian mathematician of the Kerala school (possibly 
Nilakantha Somayaji or his predecessor Madhava) discovered the exquisite 
formula: 

 
 

now known as the Gregory–Leibniz formula after its first European 
discoverers. Such formulas, relating pi to infinite sums of simple fractions, 
became much easier to derive with the invention of calculus by Isaac Newton 
and Gottfried Wilhelm Leibniz in the late 1600s. A personal favorite, 
proved by Leonhard Euler in 1734, is the amazing equation:

 

The symbol π for the “circle rate” was also introduced about this time (in 
1706 by William Jones), and popularized by Euler.

Take a moment to reflect on the beauty of these formulas. These equations 
reveal that the number pi is not merely a geometric concept. Three of the 
great tributaries of mathematics merge in these formulas: geometry (the 
number pi), arithmetic (the sequence of odd numbers, and the sequence of 
squares 12, 22, 32, …), and analysis of the infinite (in this case, infinite sums). 
Archimedes would have been flabbergasted to see formulas like these. Liu 
would have been speechless. And they would have gone straight out to buy a 
book on calculus and learn this wonderful new art.

And yet there are even deeper levels to the number pi. It is irrational—a 
fact that eluded ancient mathematicians, although they must have suspected 
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it. Johann Lambert proved the irrationality of pi in 1761. A 
century later, Ferdinand Lindemann (in 1882) proved the 
more subtle fact that pi is transcendental, a kind of souped-up 
version of irrationality.‡ Lindemann’s theorem resolved the 
ancient problem of squaring the circle, posed by the ancient 
Greeks: Is it possible, with only basic geometric operations, 
to draw a square whose area is the same as a given circle? A 

positive answer to this question—a method for squaring the circle—would 
have made the number pi more accessible to them. Alas, it was not to be. 
Transcendental ratios cannot be constructed with a ruler and compasses.

Even today, there are facts we still do not know about pi, and 
discoveries presumably still waiting to be made. As recently as 1995, three 
mathematicians—David Bailey, Peter Borwein, and David Plouffe—
discovered a brand-new formula for pi that may deserve to be etched on 
the same mountaintop as Leibniz’s and Euler’s. It is the first self-repairing 
formula for pi, in the sense that if you make a mistake at the 527th place, 
it doesn’t invalidate your later calculations. However, there is a catch. The 
self-correcting property is only true if you write pi in hexadecimal (base 16) 
arithmetic, as computers do.§ It won’t work in ordinary (decimal) notation. 
So if God created the integers, and God created pi, then perhaps God is 
actually a computer.

‡	 A number is transcendental if it cannot be expressed as the solution to any polynomial equation with 
rational coefficients. For instance, √2 is not transcendental, because it solves the equation x2 = 2.
§	 In hexadecimal notation, p = 3.243F6A8885A308D3… The letters “A” through “F” stand for the 
numbers 10 through 15, which are single digits in base 16.

Above A mosaic 
illustrating the  

pi symbol, laid into 
the floor outside the 

mathematics building 
at the Technische 
Universität Berlin.
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The city of Elea, in the present-day province of Salerno, Italy, was home to 
two noted philosophers who spanned the period between Pythagoras and 
Socrates. Parmenides, the elder of the two, was noted for his beliefs that all 
things are one and that the world we perceive is different from the world of 
reality—a viewpoint that would strongly influence Plato’s philosophy.

Parmenides’ student, Zeno, is noted not so much for any particular beliefs as 
for a style of debate that Aristotle called dialectic, in which you argue against 
your opponent’s beliefs rather than in favor of your own. Zeno would take  
his opponent’s belief as a premise and try to prove logically that the premise 
led to an absurdity. His arguments are usually called “paradoxes” because they 
seem to refute very commonly-held beliefs. For example, suppose that you 
believe that it is possible to move from point A to point B. Before you can 
reach point B, Zeno argues, you must have gone halfway to B. Before you 
can get halfway to B, you must have gone half of that distance (or a quarter 
of the distance to B), and so on. In other words, you must have completed 
an infinite number of motions before you can even travel the tiniest fraction 
of the distance from point A to point B! Clearly, Zeno says, this is absurd. 
Therefore, motion is impossible.

A second paradox is called Achilles and the tortoise. If you believe in 
motion, Zeno says, then you must surely believe that the swift Achilles can 
catch up with a slow-moving tortoise. But he argued that if Achilles runs to 

from zeno’s paradoxes
to the idea of infinity
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where the tortoise is now, the tortoise will have already moved a few steps 
forward. If Achilles runs to that place, the tortoise will have moved forward 
once again, and so on. Again, Achilles must complete an infinite number of 
tasks in a finite time, and that (at least to Zeno) is clearly absurd.

To the modern-day mathematician, Zeno’s paradoxes are harmless. In fact, 
they are a rather perceptive description of what continuous motion is all 
about. Let’s say that Achilles is going twice as fast as the tortoise, and the 
tortoise starts with a 1-yard head start. After 1 second, Achilles has traveled 
1 yard and the tortoise has traveled 1 ⁄2 yard. (This is one fast tortoise!) After 
1 +  1 ⁄ 2 seconds, Achilles has traveled (1 + 1 ⁄ 2) yards and the tortoise has 
traveled (1 ⁄ 2 + 1 ⁄ 4) yards. Where will Achilles and the tortoise be after n of 
these steps? And how much time will elapse? Working through the sums, 
the amount of time elapsed is just shy of 2 seconds. In fact, it is:

 seconds, or more simply  seconds 

Achillles has traveled just less than 2 yards, in fact  yards 

The tortoise has traveled only half that far, i.e.  yards

The ellipsis (…) means that the sum is to be 
taken ad infinitum, not stopped after a finite 
number of steps. More formally, you can get as 
close as you want to 2 if you add up a sufficient-
ly large (finite) number of terms in this sum.
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But it had a 1-yard head start, and if we add its head start to the distance it 

has traveled, we see it is  yards ahead of Achilles’ starting point. 

Because , the tortoise is closer to the 2-yard mark than Achilles is. 

Therefore Zeno is correct in asserting that after  seconds Achilles 
is still behind the tortoise. 

So we know where Achilles and the tortoise are just a split second before 2 
seconds, and a split split second after that, and a split split split second after 
that … But no man, not even Zeno, can stop time. Eventually the stopwatch 
will reach 2 seconds. Where will Achilles and the tortoise be then? The 
answer is that they will both be at the point they have been getting closer and 
closer to—2 yards beyond Achilles’ starting point. Modern mathematicians 
call this “taking the limit” as n approaches infinity. Both of the terms 1 ⁄2n and 
1 ⁄ 2n+1 approach zero, and so disappear in the limit. After 2 seconds, Achilles 
has traveled 2 yards, the tortoise has traveled 1 yard; Achilles has caught up.

Where did Zeno go wrong? First, he started to mathematize the problem 
but did not finish the job: he left out important information, namely the 
time elapsed. Second, and more importantly, he and the other ancient Greeks 
were still sufficiently uneasy about the concept of infinity that they could not 
take the limit. That is, they could not go from the finite sum:

to the infinite sum:

 

But they tried so hard! And they came so close! Just how close becomes 
apparent when you read Archimedes’ Quadrature of the Parabola, written 
about two centuries after Zeno.

In this document, written as a letter to a fellow mathematician, Dositheus, 
upon the death of a mutual friend named Conon, Archimedes writes: “While 
I grieved for the loss not only of a friend but of an admirable mathematician, 
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I set myself the task of communicating to you, as I had intended to send 
to Conon, a certain geometrical theorem which had not been investigated 

before but has now been investigated by me, and which I 
first discovered by means of mechanics and then exhibited 
by means of geometry. Now some of the earlier geometers 
tried to prove it possible to find a rectilineal area equal to 
a given circle … but I am not aware that any one of my 
predecessors has attempted to square the segment bounded 
by a straight line and a section of a right-angled cone [i.e., 
a parabola].” He goes on to say that he has proved that any 

such region has area equal to 4/3 times the area of an inscribed triangle whose 
height is the same as the height of the parabolic region.

Quotes such as this give us insight into the character of Archimedes—
another math geek. The best way he can think to console Conon’s friend is to 
send him the proof of a new mathematical theorem! Also, notice the reference 
to squaring the circle—a subject that Archimedes had some experience with. 
Archimedes is not able to square the circle but 
he is able to “square” or rectify a different curved 
region, a far from obvious accomplishment. And 
finally, notice he draws a curious distinction 
between “discovering” the theorem by means 
of mechanics and “exhibiting” (or proving) it by 
means of geometry.

A S  I T  T U R N S  O U T,  �the method that 
Archimedes used to estimate the area of a 
circle works much better for a parabola. And 
this time there is nothing approximate about it: 
Archimedes says that the area of the parabola 
is exactly 4/3 that of the inscribed triangle. To 
prove this, he pushes out two of the sides of 
the triangle T, creating a four-sided figure that 
more closely approximates the parabola. Then 
he pushes out those sides, creating an eight-

Below right Zeno (ca. 
334–262 bc). This engraving 
first appeared in The History 

of Philosophy by Thomas 
Stanley, published in 

London in 1656.
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sided figure, and so on. And at each step, he shows, he adds one quarter of 
the area that was added in the previous step. So if we take the area of the 
initial triangle as 1, then the area of the four-sided figure is 1 + 1/4. The area 
of the eight-sided figure is 1 + 1/4 + 1/16. Continuing in this fashion, after n 
steps, he has an extremely close approximation to the parabola, whose total 
area is: 

 

This strongly resembles the sum seen when analyzing Zeno’s paradox, only 
involving powers of 4 rather than 2. Next, Archimedes shows that adding ⅓ 
of the last term to this finite sum always gives a total of exactly 4/3:

Remember that the ancient Greeks were uncomfortable with numerical 
proofs, so Archimedes had to prove this geometrically, as shown below. 
Suppose the L-shaped region labeled A has area 1. Then the area of the 

large square containing it is 4/3 (because 
the large square has four equal quadrants, 
only three of which are contained in region 
A). The large square can be filled out, or 
“exhausted,” by a shrinking sequence of 
L-shaped regions, plus one small leftover 
square in the lower right-hand corner 

Above The area of the parabola is equal to 4/3 of the triangle.

Left The area of the large square is 4/3 the area of the 
region labeled A. 

This area
= 4/3 of 
this area

A

B

C D
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(labeled D). The total area of these pieces is the left-hand side of the equation 
above. Thus the left-hand side and the right-hand side are equal.

What a wonderful argument! But notice that Archimedes stops 
after n steps; he doesn’t let the procedure run “on to infinity.” A modern 
mathematician would have no qualms about taking this step. The parabola 
is “exhausted” by successive triangles, just as the square is exhausted by the 
successive L-shaped figures. Taking the limit as the number n approaches 
infinity, we would conclude that the parabola’s area equals the square’s area, 
which we showed was 4/3. In other words, we would use the infinite sum:

 

This sum is appropriately called a geometric series in honor of its geometric 
origins. The terms in a geometric series decrease by a constant ratio from one 
term to the next. In Zeno’s case the ratio was 1/2; in Archimedes’ case it was 1/4. 
The general rule, as you might have guessed, is this:

 

Unfortunately, the mathematics of Archimedes’ time would not allow him 
to take this final step. Instead, he had to resort to an ingenious reductio ad 
absurdum argument. Just as Zeno would have done, he argues against an 
imaginary opponent. You think that the parabola’s area doesn’t equal 4/3? 
Fine. Then you must tell him whether it is greater than 4/3 or less than 4/3. 
If you say it’s greater than 4/3, then Archimedes will show by his subdivision 
technique that you have overestimated the area. If you say it’s less than 4/3, he 
will show that you have underestimated. Either way you lose, and you have 
to concede that the area is 4/3. 

With hindsight, we can see that Archimedes has come a long, long way 
towards understanding infinite processes*. He is using the infinite to discover 
new truths—a huge leap forward, which took the ancient Greeks to the 
brink of mastering the infinite.

* Actually, Archimedes was far from alone. Eudoxus of Cnidos (408–355 bc) is credited with inventing 
the “method of exhaustion,” which Archimedes employed to such good effect here.
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Archimedes of Syracuse was born about 287 bc and died in 212 bc. In 
his own time, his reputation rested more on his physical discoveries and 
engineering inventions than on his mathematics—yet he would surely 
have considered himself a mathematician. He was proudest of his proof 
that a sphere has two-thirds the volume of its circumscribed cylinder; or 
equivalently, V = (4/3)πr3. He even asked for a diagram of a sphere and a 
cylinder to be inscribed on his tombstone. 

Archimedes’ work represents a beautiful unification of applied mathematics 
with geometry and with the still gestating concept of the infinite. Today, 
however, most people probably associate Archimedes with the story that he 
ran down the road naked, crying “Eureka!” (“I have found it!”) The story 
goes that Archimedes’ friend and patron, King Hieron, wanted to know if a 
certain crown was made of pure gold. Archimedes supposedly was sitting in 
his bathtub when the solution occurred to him. If the crown was made of a 
cheaper alloy, it should be less dense than pure gold. If placed in a container 
of water, the ersatz crown would displace more water than a gold piece of the 
same weight.

Often, legends like this are codified versions of real events. One example was 
the purported drowning of Hippasus by the Pythagoreans, and another will be 

a matter of leverage
laws of levers
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seen in the discussion of how Isaac Newton discovered the law of gravity. In  
reality, Archimedes wrote a book called On Floating Bodies, in which he 
formulates what became known as Archimedes’ principle: the weight of 
water displaced by an object (either floating or completely immersed) equals 
the buoyant force exerted by the water on the object. 

From Archimedes’ principle it is possible to deduce a formula for the 
density of an object immersed in water. If ρbody denotes the density of the 
object, ρfluid denotes the density of the fluid (which, in the case of water, is 
conventionally assumed to be 1), wdry denotes the dry weight of the object 
and wimmersed denotes its apparent weight when fully immersed, then:

ρbody/ρfluid = wdry/(wdry – wimmersed)

This formula makes it possible to compute the crown’s density (or “specific 
gravity”) directly, so there would be no need to compare it with an actual 
gold crown of equal weight. Archimedes surely came to this discovery over 
a period of time, not overnight, and it is pretty certain that he was aware 
of it before King Hieron came to him. Everything else about the legend is 
embellishment, including running naked through the streets. 

In a lever, a weight w1 at distance d1 from the 
fulcrum will balance a weight w2 at distance d2.
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Archimedes’ principle and the specific gravity formula are still used 
routinely, even today. The rest of On Floating Bodies contained a wealth 
of information about bodies of different shapes and their stable floating 
configurations. It was a first step toward making shipbuilding a science 
instead of a matter of trial and error.

Archimedes also experimented with levers and pulleys. Again, there is a 
story that King Hieron remarked on the power of Archimedes’ contraptions, 
and Archimedes replied, “Give me a place to stand and I will move the 
Earth.” Archimedes understood the lever law, d1w1 = d2w2, which expresses 
the relationship between the weights of two objects (w1 and w2), if they 
are balanced on a lever at distances d1 and d2 from the fulcrum. From 
the formula it follows that a lesser weight can balance a greater weight  
if it is farther from the fulcrum. For instance, a 150-pound 
man can lift a 1500-pound safe if he stands on one end 
of a lever, places the safe at the other end, and places the 
fulcrum at least ten times closer to the safe than to himself.

Archimedes frequently used the lever law not only in 
physical devices, but also in mathematical research. As 
discussed earlier, he first discovered the area of a parabola 
“by means of mechanics” and only later proved it “by 

Below “Give me a lever 
and I will move the Earth” 
– a woodcut showing 
Archimedes putting his 
famous saying into action 
from the title page of The 
Mechanic’s Magazine 
London, 1824.
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means of geometry.” That argument, filling the parabolic segment up with 
triangles, was actually his second proof. His original proof involved an 
equally ingenious and different way of cutting up the parabolic segment into 
pieces, and balancing those pieces with rectangles of known area (or weight) 
on the other side of a lever. It was actually a favorite method of his. However, 
Archimedes apparently felt that the lever law was too informal or perhaps 
too empirical to be acceptable as pure mathematics. Thus, after “discovering” 
a theorem with levers, he felt compelled to confirm it in a way that Euclid 
would have approved.

A R C H I M E D E S  W A S  F O R T U N A T E  enough to live most of his 
life during the prosperous and peaceful 54-year reign of King Hieron. 
Unfortunately, toward the end of his life that period of peace came to an end. 
Hieron’s son antagonized the growing Roman Empire, and the result was a 
one-sided war between the Romans and the Syracusans. 

Almost single-handedly Archimedes was able to hold off the Roman  
army, by designing grappling devices and cranes of unprecedented accuracy. 
According to Plutarch, the Romans became so terrified of Archimedes’ 
devices that “if they only saw a rope or a piece of wood extending beyond the 
walls, they took flight exclaiming that Archimedes had once again invented 
a new machine for their destruction.”

As a last resort the Roman general, Marcellus, laid siege to Syracuse. 
After two years the Romans entered the city. Marcellus gave orders to 
spare the life of Archimedes, but, according to legend, a soldier came upon 
Archimedes kneeling over a mathematical diagram. “Don’t disturb my 
circles,” Archimedes told him. Enraged by the unknown man’s impudence, 
the soldier ran him through with his sword.
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On� August 10, 1548, 
the Church of Santa Maria del Giardino in Milan, Italy, was thronged 

by curious spectators. The event they came to witness was not a 

church service, but the mathematical equivalent of a duel at twenty 

paces. Using nothing but their wits, Niccolò Tartaglia of Venice would 

battle against Lodovico Ferrari, a peasant boy-turned-servant to one 

of Milan’s most famous citizens: Girolamo Cardano—a physician, 

gambler, and jack of all intellectual trades. 

Curiously, Cardano himself was nowhere to be found. He 

had precipitated the ruckus three years earlier by publishing a 

mathematical formula that Tartaglia had given to him in strictest 

confidence. However, on this day he had found a convenient excuse 

to be out of town while his servant, who was in all likelihood a better 

mathematician than himself, defended his honor.

The competitors must have seemed better suited for a back-alley 

brawl than a contest of minds. Tartaglia had been disfigured as a youth 

by a deep saber wound to his jaw, received when a French army sacked 

his hometown of Brescia in 1512. Though as an adult he hid his scar by 

growing a full beard, the injury had left him with a permanent speech 

defect that led to his nickname: Tartaglia, the stammerer. Ferrari, too, 

bore the scars of a rough-and-tumble childhood, as he was missing 

some of the fingers of his right hand.
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We will never know exactly what happened in the church that day. 

The planned contest of minds apparently turned into a shouting 

match. But circumstantial evidence suggests that Ferrari was perceived 

as the winner. The governor of Milan, who was in the audience, was 

impressed enough by Ferrari’s talent to hire him as a tax assessor. 

Tartaglia lost a teaching position he had just gotten in Brescia, for 

which he never received a penny. He died nine years later as Cardano’s 

sworn enemy. As for the man who had started it all, Cardano returned 

home with his reputation intact and continued to enjoy the life of the 

proverbial Renaissance man.

The battle in the church was the final act of one of the most bitter 

and bizarre disputes in the history of mathematics, a debate over the 

rights to the first completely new mathematical discovery in Europe 

since the fall of the Roman Empire. Until the early 1500s, western 

Europe had mostly been playing catch-up to the rest of the world, 

as well as to its own past. The formula that Tartaglia had confided 

to Cardano—which is now known, rather unjustly, as Cardano’s 

formula—has been compared to the discovery of America, because 

it was a new fact about the world that was not even hinted at in any 

ancient books. It launched an Age of Exploration in mathematics that 

would transform the map of the mathematical world as profoundly as 

Columbus’s discovery transformed the map of the physical world.
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the stammerer’s secret
cardano’s formula

The story of Cardano’s formula really begins more than 3000 years earlier. 
In the period between 1850 and 1650 bc, problems like this one proliferated 
in Babylonian mathematical tablets: find two numbers whose product is 60, 
and whose difference is 7. A modern mathematician would call the numbers 
x and y and note that y = 60/x. Therefore, x – 60/x = 7, or equivalently, x2 – 7x 
– 60 = 0. Then one would trot out the quadratic formula, which says that the 
solution to any quadratic equation, ax2 + bx + c = 0, is given by:

Using a = 1, b = –7, and c = –60, said mathematician would obtain the 
solutions x = 12 and y = 60/12 = 5.

However, the Babylonians did not have the algebraic tools that we do 
today. Instead, the scribe took a more intuitive approach, which involved 
drawing a rectangle with the unknown side lengths, x and y, cutting it into 
pieces, and rearranging the pieces into an L-shaped figure, as shown on page 
62. He then “completed” the L-shaped figure by adding a small square of 
known area in the corner. A similar method of solution—called “completing 
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the square”—is still taught in high-school algebra as a precursor to the 
quadratic formula, but usually with no reference to its geometric meaning or 
its historical provenance. 

The other ancient mathematical cultures also “knew” the quadratic 
formula or else had equivalent methods for solving quadratic equations. 
Euclid employed a geometrical construction that produced a line segment 
of the requisite length. In seventh-century India, Brahmagupta, discussed 
previously in relation to zero, provided a recipe to solve the equation ax2 + 
by = c that is essentially the quadratic formula written in words instead of 
symbols.

However, classical mathematics is essentially silent* on the question of 
how to solve a cubic equation, ax3 + bx2 + cx + d = 0. In 1494, Fra Luca Pacioli, 
an Italian mathematician, expressed the opinion that cubic equations would 
never be solved exactly. Pacioli was proved wrong only a generation later!

*	 An exception is the Persian poet and mathematician Omar Khayyam (1050–1130), who showed how 
to solve a large class of cubic equations by geometrical constructions (e.g., by finding the intersection 
point of a parabola and a circle). However, the results are not readily convertible into numerical form, 
and are not equivalent to the later work of Tartaglia and Cardano.

Cardano’s formula for solving a reduced
cubic polynomial, x3 + px = q
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In the early 1500s, a Bolognese 
mathematician named Scipio del 
Ferro apparently found a method 
for solving cubic equations that 
are lacking the quadratic term: 
in other words, any equation of 
the form x3 + px = q. Nowadays, 
a mathematician who made such 

a discovery would hasten to publish it. However, in the Italy of that era, 
mathematicians made their reputations by defeating other mathematicians 
in problem competitions. Del Ferro therefore kept his method secret, so that 
he could pose problems that his opponents would not be able to solve. Only 
on his deathbed did he confide his secret to two of his students, Antonio 
Maria Fiore and Annibale della Nave.

However, rumors soon spread about del Ferro’s discovery. In the early 1530s, 
Tartaglia started claiming that he, too, could solve cubic equations. Thinking he 
could call Tartaglia’s bluff, Fiore rashly challenged Tartaglia to a competition. 
According to the legend (which is probably a little too good to be true), on the 
eve of the debate Tartaglia finally figured out how to solve these cubics, and so 
he thoroughly trounced Fiore. 

How, then, did Cardano get his name on what should have become 
known as Tartaglia’s or del Ferro’s formula? It becomes a little less surprising 
when you read Girolamo Cardano’s own description of himself: He wrote 
in his autobiography that he was “hot tempered, single minded, and given 
to women … cunning, crafty, sarcastic, diligent, impertinent, sad and 
treacherous, miserable, hateful, lascivious, obscene, lying, obsequious …” He 
had studied to become a physician at the University of Padua, but perhaps 
because of his erratic behavior he was forbidden to practice medicine in 
Milan until 1539. However, even before then he found great success as a 
public lecturer and writer on a variety of topics, including mathematics.

In 1539 Cardano was composing a mathematical handbook called Practica 
arithmeticae generalis, and he asked Tartaglia for the secret to solving cubic 
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equations. Tartaglia at first refused, on the grounds that he intended to write 
a book of his own. But at last, Cardano persuaded Tartaglia to come to his 
house for a visit. On the night of March 25, 1539, Tartaglia revealed his 
method under an oath of strict secrecy.

And here is the secret, in an English translation by math historian 
Jacqueline Stedall. (Tartaglia’s version, in Italian, actually rhymes!) For ease 
of understanding, Tartaglia’s verse has been interpreted here in algebraic 
symbols. “The thing” means the unknown quantity x, “the cube” means x3, 
and “the number of things” is p. The equation Tartaglia wants to solve is x3 
+ px = q, and the numbers p and q are positive. (This last point is irrelevant 
to mathematicians today, but was very relevant to sixteenth-century Italians, 
who were still as skeptical of negative numbers as the nineteenth-century-bc 
Babylonians.)

Tartaglia Algebra

When the cube with the things next after When x3 + px

Together equal some number apart
Find two others that by this differ

= q,
Find u and v such that u – v = q,

And this you will then keep as a rule

That their product will always be equal And such that uv =

To a third cubed of the number of things ( p–3)3

The difference then in general between Then

The sides of the cubes subtracted well

Will be your principal thing. = x

Tartaglia’s formula is a well-disguised way of “completing the cube,” but 
it includes a very clever new step that was not present in the Babylonian 
process of completing the square: the introduction of two new auxiliary 
variables, u and v. Here is how it works for an example considered later by 
Cardano: x3 + 6x = 20. Tartaglia instructs us to find two numbers u and v 
such that uv = (6/3)3 = 8 and u – v = 20. This pair of equations can be solved 
by the quadratic formula: u = 10 + 6√3 and v = –10 + 6√3. (These are the 
two positive solutions.) Now we are supposed to find the cube roots of u and 
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v. In general one would have to do this by approximation, 
either by hand or with an abacus. But in this particular 
case the cube roots have a simple exact form: 

 = √3 + 1 and = √3 – 1

Finally, we subtract these to get the answer: x = (√3 + 1) – (√3 – 1) = 2

A T  F I R S T , Cardano �honored his pledge not to publish Tartaglia’s method. 
However, over the next few years several things happened that made him 
itch to see the solution in print. First, he and his protégé, Ferrari, went 
beyond Tartaglia, by showing how to simplify any cubic equation to del 
Ferro’s form or one of 12 other basic forms. Second, Ferrari “invented at my 
request” (as Cardano later wrote) a method for solving quartic or fourth-

degree equations. This latter 
discovery is far more remarkable 
than Cardano’s  offhand 
comment would suggest. More 
than 3000 years elapsed between 
the solution of the quadratic and 
the first solution of the cubic—
but it took Ferrari only four 
years to move on to quartics! 
Unfortunately, the solution to 
the cubic was an intermediate 
step in the solution of quartics. 
The promise to Tartaglia was 
now a major obstacle: Without 
the method for solving cubics, 
Cardano could not publish 
Ferrari’s brilliant solution for 
quartics.

At this point Cardano found 
an ingenious loophole. In 1543, 

Below An engraving from 
frontispiece of Cardano's 
work Ars Magna, 1545, 
the first great Latin book 
dedicated to algebra.
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he tracked down del Ferro’s other student, della Nave in Bologna, and 
ascertained that Tartaglia’s method for solving the cubic was exactly the 
same as del Ferro’s. This fact apparently released Cardano (at least, in his 
own mind) from his promise to Tartaglia to keep it a secret. Two years later, 
Cardano published his greatest mathematical work, Ars magna (The great 
art), with a complete treatment of cubics and quartics, and the secret was out.

Tartaglia, of course, felt that Cardano had betrayed him. He fired off 
a volley of insulting open letters, as well as a book of his own. Cardano, 
however, remained above the fray and allowed Ferrari to do the answering 
for him—a task that Ferrari took to with great zest, and ultimately with the 
successful outcome recounted at the beginning of this chapter.

It may seem unjust that the formula for solving the cubic is now known 
as Cardano’s formula—not del Ferro’s, or Tartaglia’s, or even Ferrari’s. But 
as has already been stated in the last chapter, mathematics thrives when it 
is communicated openly. It is not enough merely to discover America—you 
must make the discovery known to the rest of the world. Cardano alone took 
that final step, and reaped the glory.

C A R D A N O ’ S  F O R M U L A  �had a lasting impact that far exceeded the 
importance of the problem it solved. For example, it provided one of the 
first motivations for the use of imaginary numbers and complex numbers 
in mathematics. Imaginary numbers are numbers whose square is negative 
(a property no real number has). Using imaginary numbers, we can say that 
–1 has two square roots, which are denoted by i and –i. Without imaginary 
numbers, we would have to say that –1 has no square roots. Once we have 
imaginary numbers, we can define complex numbers as numbers that have 
both a real and an imaginary part, such as 1 + 2i. 

Not only modern-day mathematics but also modern-day physics would 
be unthinkable without imaginary numbers. In quantum mechanics, for 
instance, elementary particles such as photons are defined to be “wave 
functions.” The wave function for a photon at some point will in general have 
complex-number values, such as 0.2 + 0.3i. The imaginary part of the wave 
function accounts for the wavelike properties, or “phase,” of the photon; for 
instance, it explains why a light beam that shines through two slits forms a 
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diffraction pattern on the other side, rather than two bright bars (see Young's 
experiment, on page 143). Thus, imaginary numbers seem to be woven in a 
very real way into the fabric of the universe. 

Prior to Cardano, it did not occur to anybody to assert that –1 has two 
square roots but they are imaginary. You might compare it to asking a child 
how many imaginary friends she is inviting to her 
birthday party. But in the case of cubic polynomials, 
these “imaginary friends” actually left behind some real 
birthday presents! In 1572, Rafael Bombelli presented 
an example of this phenomenon. The equation x3 = 15x 
+ 4 has a real solution, x = 4, that can be verified by 
substitution. However, Cardano’s formula gives:

Above A title page vignette 
illustrated in Cardano’s 
Opera omnia, 1663, depicting 
Ptolemy and Euclid.
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Cardano had no interest in such nonsense: “So progresses arithmetic 
subtlety, the end of which, as is said, is as refined as it is useless,” he once 
wrote. But Bombelli realized that these expressions have meaning. The first 
cube root is equal to 2 + i and the second is equal to 2 – i, and therefore x 
= (2 + i) + (2 – i) = 4. In the final solution the imaginary quantities have 
disappeared, but we could not have gotten to the solution without them. 

Thankfully, today’s students are no longer expected to learn Cardano’s 
formula. Nevertheless, nineteenth-century students were expected to know 
how to solve cubics. Albert Einstein, in his university exams, correctly solved 
a problem with Cardano’s formula—in contrast to the surprisingly persistent 
legend that he was a poor mathematics student.

Another long-delayed ramification of Cardano’s formula involved the 
solution of higher-degree equations. After the cubic and quartic had been 
tamed, one might have expected the solution of fifth-degree polynomials, or 
quintics, to follow shortly thereafter. But strangely, another 250 years went 
by with very little progress. Some quintic equations can be solved. But no 
universal solution, applicable to all quintics, was ever found.

In 1824, a Norwegian mathematician named Niels Henrik Abel finally 
showed that there could not be any Cardano-like formula for the solutions 
to a fifth-degree equation. (“Cardano-like formula” refers to any formula 
that involves square roots, cube roots, fourth roots, etc., possibly nested 
inside one another. Mathematicians call this a “solution by radicals.”) Abel’s 
theorem may have closed one chapter of mathematics, but it opened another. 
His proof led mathematicians to a deeper understanding of the concept of 
symmetry, a topic to be discussed in chapter 14. 
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order in the heavens
kepler’s laws of planetary motion

Another great battle of sixteenth- and seventeenth-century science was 
fought over a “revolutionary” theory that actually was not a revolution. In 
1543, while on his deathbed, Nicolaus Copernicus published a book called 
De revolutionibus orbium coelestium, which placed the Sun, not Earth, at the 
center of the solar system. Although Copernicus’ theory was at odds with 
the ecclesiastical understanding of the cosmos, it was definitely not a new 
idea. Aristarchus of Samos, a Greek philosopher, had already discussed a 
heliocentric model of the universe in the fourth century bc.

In the early years of the 1600s, two events thrust the “Copernican” (but 
really Aristarchan) theory into the center of a storm of controversy. The first 
was the invention of the telescope in 1608. Secondly, using one of these new 
instruments, Galileo Galilei discovered four small moons orbiting Jupiter. 
For Galileo, and for anyone else who took the trouble to look through the 
telescope, here was direct visual evidence of objects in the universe that did 
not orbit Earth. Galileo’s discovery sounded the death knell for the dogma 
that Earth was the center of the universe.

It is easy to paint Galileo as the great champion of the Copernican theory, 
and indeed his story is full of drama and martyrdom. Brought to trial by the 
Inquisition in 1633 on a charge of heresy for advocating the view that the 
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Earth was not the center of the universe, Galileo was convicted, forced to 
recant, and confined to house arrest for the rest of his life. However, there 
is a second hero of the story who is not quite as well known, yet perhaps 
deserves equal credit: Johannes Kepler.

Although he is primarily considered an astronomer, Kepler had a real 
gift for mathematics and for bold conjecture. He was able to spot patterns 
where no one else had before—and sometimes where none existed. For 
example, when Galileo announced his discovery that Jupiter had four moons, 
Kepler conjectured that Mars must have two moons and Saturn eight, in 
order to make a geometrical progression: 1 (Earth), 2 (Mars), 4 ( Jupiter), 8 
(Saturn). Amazingly, he was right about Mars, but the “pattern” was an utter 
coincidence. Jupiter has 63 moons that we know about, and Saturn has 62.

It is easy to understand why Kepler, with his speculative temperament, 
was one of the first scientists to wholeheartedly embrace Copernicus’ theory. 
It is a bit more of a surprise to see him chastising Galileo for not doing the 
same. In 1597, when Galileo wrote to him that he agreed with Copernicus 
but dared not publish his opinion, Kepler wrote back: “I would have wished, 
however, that you, possessed of such an excellent mind, took up a different 
position … Have faith, Galilei, and come forward!” Nevertheless, Galileo 

The function r(θ) represents the distance of a planet from the Sun when its location 
on the zodiac is θ degrees. The angular position θ(t) is itself a function of time, t. 
The total time it takes the planet to go around the Sun is T. The constants p and R 
describe (roughly) the width and length of the orbit. The eccentricity, e, describes how 
far the orbit deviates from a perfect circle. C1 and C2 are two empirical constants. 
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remained publicly silent for thirteen more years, until his discovery of 
the Galilean moons of Jupiter gave him the evidence he needed to “come 
forward.”

N O W A D A Y S ,  K E P L E R ’ S  F A M E  �rests on three mathematical laws that 
he discovered by analyzing the painstaking observations of the orbits of the 
planets that had been taken by his former employer, the Danish astronomer 
Tycho Brahe. His laws form a bridge from the old style of astronomy, which 
was concerned with describing the cosmos, to a new style that explains the 
motions of the planets and other celestial bodies. They are still descriptive 
laws, but they are so precise that they virtually beg for a mathematical 
proof. Isaac Newton provided the proof in 1686, roughly three-quarters of a 
century later.

Kepler’s first law states that planets orbit the Sun in ellipses, not circles, 
with the Sun at one focus. To express this in equation form, we could write 
it as follows: 

 

Here r(θ) represents the distance from the planet to the Sun when it is θ 
degrees away from aphelion (its greatest distance from the Sun). The number 
p represents the distance when the planet is 90 degrees away from aphelion, 
and the number ε represents the eccentricity, or departure from circularity, 
of the planet’s orbit. Notice that if the eccentricity ε is zero, the equation 
becomes r(θ) = p: in other words, the distance from the planet to the Sun is a 
constant. In this case, and only in this case, the orbit is a circle.

Ironically, Kepler’s first law was actually a departure from strict 
Copernicanism. The Sun is not at the center of Earth’s orbit, but slightly 
displaced from it. At its closest approach to the Sun, called perihelion, Earth 
is about 91.3 million miles (147 million kilometers) away. At its greatest 
distance, Earth is 94.5 million miles (152 million kilometers) away. More 
importantly, Kepler’s law made a clean break with centuries of tradition 
that tried to describe planetary orbits either as circles, or as complicated 
combinations of circular motions. Aristotle had considered circles to be the 
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most perfect curves, and therefore the only ones that could describe the 
motion of the heavenly bodies. In the third century, Ptolemy had refined 
Aristotle’s system with a complicated, Rube Goldberg-esque arrangement 
of circular motions superimposed on other circular motions—but even so 
he could not predict the planets’ motions very accurately. Kepler’s law (to 
modern eyes) is simple, economical, and far more beautiful than Plutarch’s 
theory. To determine the shape of any planet’s orbit, you need to know only 
two numbers: p and ε.

But Kepler wasn’t finished. He discovered two more patterns in Brahe’s 
planetary data that have since been elevated to the status of “laws.” Kepler’s 
second law states that planets speed up when they get closer to the Sun, and 
they do so in a precisely quantifiable way. The area that a planet sweeps out 
in any given, fixed-time interval is the same no matter where the planet is in 
its orbit. Because Earth is closer to the Sun at perihelion, it must sweep out 
a fatter triangle in one day at perihelion than it does when it is at aphelion, 
as shown above.

Earth’s orbit is so nearly circular (ε = 0.0167), that most of us are not aware 
of these subtle differences. Nevertheless, they do affect us, more profoundly 
than most people realize. At present, Earth’s closest approach to the Sun 
falls during the northern hemisphere’s winter. This means that the northern 
hemisphere has somewhat shorter (and milder) winters than it would if the 
perihelion came in summertime. However, this will not always be the case. 
In about 13,000 years, the situation will be reversed, and we will experience 

Equal areas

Left Kepler’s Second Law:  
The line joining a planet  
and the Sun sweeps out  
equal areas during equal  
intervals of time.
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longer and more severe winters. The existence of orbital variations like these 
has been proposed as a contributor to ice ages.

While Kepler’s first two laws were the culmination of an eight-year 
struggle to understand Brahe’s data on the orbit of Mars, Kepler’s third law 
seems to have occurred to him quite suddenly—on March 8, 1618, as he was 
putting the finishing touches to a book called Harmony of the World. Unlike 
the first two laws, which describe the motion of an individual planet, the 
third law provides a basis for comparison between planets. It says that the 
length of a planet’s year is proportionate to the 3/2 power of its distance to 
the Sun. (Another way of saying this is that the square of the orbital period 
is proportional to the cube of the mean distance from the Sun.) For instance, 
Pluto is 39.5 times farther from the Sun than Earth is. Thus it takes (39.5)3/2 
= 39.5 √39.5 = 248 years to orbit the Sun.

Kepler’s third law is actually more useful in reverse. It 
is easy to measure the orbital time of a planet around the 
Sun, or a moon around a planet, or two stars around each 
other. The hard part is measuring the distance between 
them. Kepler’s law gives us an immediate way of converting 
orbital periods to distances. Later improvements, using 

Newton’s law of gravitation, enable us to infer the mass of moons, planets, or 
stars from their orbital periods. Such calculations are essential, for instance, 
in the search for extrasolar planets (i.e., planets in other solar systems) that 
might be capable of supporting life. If we didn’t know how big and how far 
away from its sun a planet is, we would not know whether it is habitable. 
If, one day, we do find evidence of life on a distant planet, we will owe it to 
Kepler and his third law.

Opposite The orbit of 
Mars, an engraving from 
Astronomia nova�by Kepler 
(1571–1630).
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writing for eternity 
fermat’s last theorem

Pierre de Fermat was not a practical joker. The son of a wealthy leather 
merchant in southern France, he earned a law degree at the University of 
Orleans in 1631, bought a seat in the parlement (supreme court) at Toulouse, 
and became a member of the nobility. From the evidence of his letters, he 
was a shy, taciturn man who disliked controversy. 

But Fermat had one unusual characteristic: He loved mathematics. In an 
era when mathematicians were starting to reach across national boundaries 
and turn their subject into an international enterprise, he achieved worldwide 
fame that lasted long after his death. By a curious twist of fate, his most 
lasting legacy was a problem that he almost certainly did not solve. That 
problem, called Fermat’s Last Theorem, unintentionally became the greatest 
practical joke in mathematical history—a deceptively simple statement that 
defied all efforts at proof for more than 350 years.

To the best of our knowledge, Fermat was self-taught. However, during his 
student days he formed friendships with a small circle of people who were 
interested in mathematics, and this apparently stimulated him to start doing 
his own research. One of his friends moved to Paris in 1636 to work in the 
royal library, and brought the work of this previously unknown provincial 
mathematician, Fermat, to the attention of Father Marin Mersenne.
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In an era before scientific academies and scientific journals, when most 
universities did not even have a professor of mathematics, Mersenne was 
the focal point of mathematics in France. He held regular meetings at his 
convent and kept in touch with nearly every mathematician in Europe. If 
you wanted to publicize a new discovery, you would send it to Mersenne. The 
rest of the world would find out soon enough.

Fermat himself never visited Paris, never ventured out of the south of 
France, and met Mersenne only one time, in 1646. He adamantly refused 
to have anything published under his own name. Nevertheless, his results 
became known everywhere, thanks to Mersenne, and other mathematicians 
in France and abroad avidly desired to learn his methods.

Yet Fermat was very close-lipped. His normal modus operandi was to 
send his discoveries as problems to other mathematicians, often artfully 
concealed so that the true nature of his discovery would not be apparent to 
the recipient unless they had been working on similar problems themselves. 
In this way Fermat could ascertain whether he had found something new, 
without giving away what it was.

Of course this sort of challenge both tantalized and annoyed other 
mathematicians. René Descartes called Fermat a “braggart,” and Bernard 

The numbers x, y, z, and n are positive integers, 
and n is greater than 2. In contrast to the previous 
equations I have discussed, Fermat’s Last Theorem 
states that this equation has no solutions.
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Frénicle de Bessy accused him of posing impossible problems. Fermat 
seems to have been torn between his desire for recognition and a nearly 
pathological fear of revealing too many of his secrets. On the one hand, he 
was fond of quoting a motto of Sir Francis Bacon: Multi pertranseant ut 
augeatur scientia (“Many must pass by in order that knowledge may grow”). 
On the other hand, by his reluctance to publish, Fermat made many parts of 
his own work inaccessible to “passersby.”

F E R M A T  W A S  T H E  F I R S T  �modern European mathematician to take 
an active interest in number theory, the study of equations with integer 
solutions. An ongoing theme in his work was Pythagorean triples: in other 
words, whole numbers a, b, and c such that a2 + b2 = c2. As Fermat knew from 
studying a book that had been recently translated from the ancient Greek, 
Diophantus’ Arithmetica, the Greeks had a general method for solving 
this equation. Fermat came up with innumerable variations on the theme: 
finding two Pythagorean triples with the same hypotenuse c; Pythagorean 
triples whose areas were square numbers, or twice a square, or such that the 
sum of the legs a + b was square. He was able to resolve all of these problems 
to his satisfaction, even on occasion proving that there was no solution. (For 
example, no Pythagorean triangle has an area that is a perfect square.)

One day, probably between 1636 and 1640, he came up with another 
variation: Could a cube be written as a sum of two cubes? More generally, did 
the equation xn + yn = zn ever have whole-number solutions if the exponent 
n was greater than 2? In the margin of his personal copy of Diophantus, 
Fermat wrote: “No cube can be split into two cubes, nor any biquadrate 
[fourth power] into biquadrates, nor generally any power beyond the second 
into two of the same kind. For this I have discovered a truly wonderful proof, 
but the margin is too small to contain it.” This handwritten note, which 
Fermat never intended anyone to see, became one of the most famous quotes 
in mathematical history. As number theorist André Weil has written, “How 
could he have guessed that he was writing for eternity?”

After Fermat died, his son Samuel collected and published his writings, 
including the copy of Diophantus with all of Fermat’s marginal notes. In the 
1700s, the Swiss mathematician Leonhard Euler took as a personal challenge 
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to (re)-prove all of Fermat’s results in number theory. The statement about 
splitting up powers into like powers was the only one that eluded him. He 
did prove that the equations x3 + y3 = z3 and x4 + y4 = z4 have no integer 
solutions, but he despaired of finding a general method for all n.

Fermat’s innocent marginal note became known as “Fermat’s Last 
Theorem.” Technically, of course, it was not a theorem (i.e., a proven fact), 
but a conjecture. In 1825, Peter Gustav Lejeune Dirichlet proved that there 
are no whole-number solutions if n = 5. In 1839, Gabriel Lamé proved 
likewise for n = 7. By 1857, Ernst Kummer had proved it for all exponents 
n up to 100. Even though progress seemed agonizingly slow, the efforts to 
prove Fermat’s Last Theorem were opening up new areas of mathematics, 
today called algebraic number theory. 

In the twentieth century, Fermat’s Last Theorem continued to spawn 
new mathematics, like the goose that laid golden eggs. In the early 1980s a 
German mathematician, Gerhard Frey, realized that any putative solution to 
Fermat’s equation, an + bn = cn, could be used to construct an auxiliary curve, 
given by the equation y2 = x(x – an)(x + bn), which struck Frey as a highly 
bizarre specimen. It was so bizarre, Frey argued, that it would violate another 
unproven conjecture in number theory, called the Taniyama–Shimura 
conjecture. The evidence was circumstantial at first, but subsequently an 
American mathematician, Kenneth Ribet, proved that Frey was right—if 
the Taniyama–Shimura conjecture was true, so was Fermat’s Last Theorem.

Frey’s idea was forehead-smackingly clever. He turned the variables 
in Fermat’s equation into coefficients of a different equation. It’s like the 
reversal of the foreground and background in a picture by M.C. Escher. Even 
so, it was very far from obvious that Frey’s and Ribet’s work represented any 
kind of breakthrough. They had only exchanged one seemingly unattainable 
goal for another. In effect, Frey and Ribet said: You want to climb Mount 
Everest? It’s easy. Just grow wings. 

Only one person in the world actually believed that he could prove the 
Taniyama–Shimura conjecture: Andrew Wiles. And he did it more or less 
by “growing wings.” Actually, he built an airplane. Over a seven-year period, 
working alone in his attic, he linked together three of the most difficult, 
abstract, powerful theories of twentieth-century mathematics—the theories 
of L-functions, modular forms, and Galois representations—into a smoothly 



78

 

P A R T  T W O

functioning machine.  One might compare his proof to the 
Apollo missions to the Moon, which combined (at least) 
three independent technologies: rocketry, computing, 
and communications. None of these technologies were 
developed with a Moon mission in mind. If any one of the 
three had been missing, the Moon missions would have 
been inconceivable. Yet they did come together, at just the 
right time, to conquer a famous “unsolved problem” (How can humans fly to 
the Moon?). Coincidentally, like Fermat’s Last Theorem, that problem had 
been around for just about 350 years. 

W I L E S  A N N O U N C E D  H I S  P R O O F  of Fermat’s Last Theorem in 
1993. Unlike Fermat, Wiles submitted his proof for publication, in 1994. In 
the three-and-a-half centuries between Fermat and Wiles, mathematicians 

Above Woodcut by Maurits 
Cornelius Escher, 1938, Sky 
and Water I, an example of 
reversal of the foreground 
and background
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had learned their lesson: a “theorem” without a published proof is no theorem 
at all. In fact, as Wiles wrote up his proof in 1993, he discovered a gap that 
took him a year (plus the assistance of a student, Richard Taylor) to plug. 
Perhaps, if Fermat had taken the trouble to write down his proof, he would 
have discovered a gap as well.

And this brings us to an inescapable question: Did Fermat actually find 
a correct proof? The answer of any competent number theorist would be 
a resounding no. According to André Weil, we can be certain that Fermat 
had a proof for the n = 4 case, and we may plausibly believe that he found 
something like Euler’s proof for the n = 3 case. Both of these cases were 
solvable with Fermat’s “technology.” But beginning with n = 5, the problem 
changes very significantly. The case n = 5 required the nineteenth-century 
machinery of complex numbers and algebraic number fields. And, as I 
have described, Wiles’ proof of the general case required top-of-the-line 
twentieth-century concepts that Fermat could never have dreamed of.

To the mathematical argument Weil adds a psychological one. Fermat 
repeatedly bragged about the n = 3 and n = 4 cases and posed them as 
challenges to other mathematicians (including poor Frénicle). But he never 
mentioned the general case, n = 5 and higher, in any of his letters. Why 
such restraint? Most likely, Weil argues, because Fermat had realized that his 
“truly wonderful proof ” did not work in those cases. Every mathematician 
has had days like this. You think you have a great insight, but then you go 
out for a walk, or you come back to the problem the next day, and you realize 
that your great idea has a flaw. Sometimes you can go back and fix it. And 
sometimes you can’t.

Weil’s mathematical and psychological arguments are compelling. 
However, I would like to give the last word to a class of high-school students 
I taught in 1990, three years before Wiles announced his proof. On the last 
day of the course, a group of them performed a skit based on Fermat’s life. 
As the curtain came down, they chanted in unison:

“Fermat! Fermat! He’s our man! If he can’t prove it, no one can!” 
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an unexplored continent 
the fundamental theorem of calculus

William Dunham made an analogy between the discovery of Cardano’s 
formula for the cubic and Columbus’s discovery of America. However, 
the analogy falls short in one very important way. Columbus discovered 
an entire continent, comparable in size and importance to Europe. By 
contrast, Cardano’s formula today is little more than a curiosity, even to 
mathematicians. Perhaps its significance could be compared to the impact 
of Columbus’s discovery if Cuba and Hispaniola (where Columbus first 
made landfall) had merely been isolated islands with no continent nearby. It  
would certainly have been an amazing discovery, but perhaps not one to alter 
world history.

In the seventeenth century, though, mathematicians did find their 
equivalent of the New World, an unexplored “continent” of mathematics. 
The continent is called Calculus, and it had two primary discoverers: Isaac 
Newton and Gottfried Wilhelm Leibniz. 

Calculus gave mathematicians and scientists a vocabulary for talking 
about quantities that change. The Fundamental Theorem provides a 
practical tool for solving problems about such quantities. Modern science, 
especially physics and engineering, would be inconceivable without it. 
Ironically, modern research mathematicians almost never use the term  
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“calculus.” The branch of mathematics that deals with functions, integrals,  
derivatives, and infinite series—in other words, everything connected 
with the Fundamental Theorem of Calculus—is called “analysis,” and it is 
subdivided into Real Analysis, Complex Analysis, Functional Analysis, etc., 
just as America is subdivided into North, South, and Central America. To 
some extent the difference is one of intellectual rigor. In a “calculus” book, 
a mathematician will expect the arguments or explanations to be informal, 
intuitive, or entirely absent; in a book on “analysis,” he or she will expect 
formal and correct proofs. However, in my opinion, the distinction is also 
motivated (or perpetuated) by intellectual snobbery.

Newton and Leibniz were born only four years apart—Newton in a  
village called Woolsthorpe, England, in 1642, and Leibniz in Leipzig, 
Germany, in 1646. Newton became a national hero in England, and was 
buried in 1727 in Westminster Abbey, the final resting place of kings. 
Leibniz, in spite of his successes in both mathematics and philosophy, was 
relatively unappreciated in his home country. When he died in 1716, he was 
buried in an unmarked grave. 

Newton made fundamental advances in physics as well as mathematics: He 
invented the reflecting telescope and formulated Newton’s laws of motion, 

The functions f(x) and F(x) are continuous functions of a variable x. In the second 
equation, t is an auxiliary variable. F(x) is an antiderivative of f(x), meaning that 
dF/dx = f(x).  The integral ∫ and derivative d/dx were operations introduced by 
Newton, based on the ancient problems of finding tangents to curves and areas of 
regions with curved edges. The Fundamental Theorem says that these are inverse 
operations: if you integrate the derivative of any function, or vice versa, you get 
back the original function.
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which will be discussed at greater length in chapter 11. It is no exaggeration 
to say that our buildings stand and our spacecraft fly because of Newton’s 
laws. His long and productive scientific career more or less coincided with 
his years at Cambridge University, where he arrived in 1661 as a subsizar 
(undergraduate), and left in 1696 to manage the British mint.

Leibniz, like Newton, had many interests outside mathematics. As a 
philosopher, he wrote (for example) about the problem of evil, and argued 
that although some evil was necessary, God had created the “best of all 
possible worlds.” This belief was later ridiculed in Voltaire’s famous book, 
Candide. Leibniz’s mathematical work was concentrated mostly between the 
years of 1672 and 1676, when he was stationed in Paris as a diplomat and 
had plenty of time on his hands. It was perhaps the best place in the world to 
learn mathematics, because much of Mersenne’s former network of friends 
was still intact, and had recently become formally organized as the French 
Academy of Sciences.

With the wisdom of hindsight, we can see that European mathematicians 
had been groping toward the discovery of calculus for the entire seventeenth 
century. Their attempts came from two separate directions. The first was  
the problem of quadrature, finding the areas of irregular (usually curved) 
regions. The problem of quadrature had fascinated mathematicians, of course, 
ever since antiquity. Early methods of computing areas were based on cut-
and-rearrange arguments. Later, mathematicians like Archimedes in Greece 
and Liu Hui in China had become more sophisticated, approximating 
curved regions by a sequence of ever more accurate polygonal (straight-
sided) regions. 

Above Tangents and curves.
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In the early 1600s, an Italian mathematician, Buonaventura Cavalieri, 
had devised a systematic method, the “method of indivisibles,” that involves 
cutting the unknown area up into narrow, rectangular slices and adding up 
their areas. In fact Archimedes had developed a similar method centuries 
before, but his work had been lost and was recovered only in 1906, too late to 
materially influence the history of European science. Neither Cavalieri nor 
Archimedes understood how to turn this method into a practical calculation 
tool; the examples they worked out were few and arduous.

T H E  S E C O N D  R O U T E  T O  C A L C U L U S  began with the problem 
of drawing tangents to arbitrary curves. That is, how can you draw a line that 
just grazes a curve at one point? Like the quadrature problem, the solution 
in general requires a sequence of approximations. In order find the tangent  
line at a point on a curve, you need to know the slope of the curve at that 
point. To compute the slope, you can imagine taking a nearby point on the 
curve, drawing a line segment between the nearby point and the given point, 
and computing the slope of that line segment. Your answer will always be 
slightly off the mark. If only you could make the nearby point “infinitely 
close” and the line segment “infinitesimally short”! Unfortunately this is 
difficult to justify mathematically, because it amounts to dividing 0 by 0.

Some people, including Fermat and probably also Newton’s teacher 
at Cambridge, Isaac Barrow, had actually worked on both the problem of 
quadrature and the problem of tangents. However, only Newton and Leibniz 
grasped that the problems are actually flip sides of one another. If you have 
not studied calculus before, you should be shocked by this statement. There 
is absolutely no apparent connection between the tangent to a curve and the 
area inside a (different) curve. 

The connection between the two ancient problems appears only after 
what seems at first like a highly arbitrary and artificial step: We turn curves 
into graphs. Of course, nowadays almost everybody is familiar with graphs. 
For example, there are graphs of stock prices in the business pages of the 
newspaper and electrocardiograms on monitors in hospitals. But in the 
seventeenth century, the idea of a graph was still very new. 

A graph is a visual representation of the relationship between two 
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variables: stock price and time, or electric potential and time. Some rule 
or process takes one variable (say, the time, or t) as input and produces 
the other variable (say, the stock price or f(t)) as output. 
The nature of this rule is not always clear in real-life 
examples like those that have been cited here. However,  
classical mathematicians were not interested in stock 
prices and electrocardiograms. They were interested in 
circles, parabolas, ellipses, spirals, and the like. For such 
curves, with a judicious choice of coordinate axes, it is 
often possible to write down a mathematical expression f(t) whose graph is 
the desired curve.

T H E  T W O  A N C I E N T  P R O B L E M S  of tangency and quadrature 
are now more easily reinterpreted. The slope of a tangent line to a curve 

is actually a camouflaged version of 
the rate of change of the function it 
is a graph of. For example, suppose 
you went on a car trip, and at regular 
time intervals you recorded the 
distance on your odometer (let ’s 
call that F(t)), while at the same 
time recording the speed on your 
speedometer (let ’s call that f(t)). 
Thus, if you start at 12:00 and travel 
60 miles in one hour, then F(1:00) = 
60 miles. If you are going 30 mph at 
1:00, then f(1:00) = 30 mph.

Now compare the odometer 
reading at time t to the next 
odometer reading, at time t'. These 
will give you two nearby points on 
the “odometer graph.” To find the 
slope of the graph of F(t), at time t, 
you would divide the distance you 

Below Color copper 
engraving of Leibniz 
(1646–1716), German 
philosopher and 
mathematician. 
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traveled in that short time interval by the elapsed time, in accordance with 
the high-school definition of slope as “rise over run.” But that is the same 
thing as computing the average speed! (For example, if you went 2 miles in 
3 minutes, your average speed over that time was  2–3 miles per minute, or 40 
mph.) Thus, the rate of change of the “odometer function”—over a short 
time interval—is the average of the speedometer function over that length 
of time. 

There is just one more change to make in order to express the relationship 
in calculus terms. The words “over a short time interval” must be erased and 
replaced with the word “instantaneous.” The instantaneous rate of change, or 
derivative, of the odometer function is the speedometer function. This seems 
like a tiny, almost insignificant modification. In fact, it is by far the hardest 
part of the whole argument. Neither Leibniz nor Newton fully justified it, 
and the debate over what exactly this word “instantaneous” means continued 
well into the nineteenth century.

However, let’s give Newton and Leibniz the benefit of the doubt and move 
on to the second classical problem, the problem of quadrature, this time 
focusing on the “speedometer function,” f(t). Again, there are two times, a 
and b (this time they don’t have to be close), and the aim is to discover the 
area (quadrature) of the region under the graph of f(t), and between the times 
a and b. Skipping the explanation and going straight to the answer (you can 
read the explanation in any book on calculus, if you’re brave), the quadrature 
of the “speedometer function” is the “odometer function.” In calculus lingo, 
F(t) is the integral of f(t).

T H U S ,  N E W T O N  A N D  L E I B N I Z  introduced two new mathematical 
concepts: the derivative, which solves the tangency problem, and the integral, 
which solves the quadrature problem (although Newton used different 
words for these.) To some extent, both of these things had been done before;  
the integral was essentially the same as Cavalieri’s method of indivisibles. 
But no one had realized before that the derivative and the interval are  
inverse operations. The derivative of the odometer function is the  
speedometer function; the integral of the speedometer function is the 
odometer function. 
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This inverse relationship is known today as the Fundamental Theorem  
of Calculus. Here is how we write it today as a formula (actually, it consists 
of two formulas):

 
 

and 

The first formula says that you can find the distance traveled, F(b) – F(a), 
by integrating the speed. (That is what the symbol ∫ means.) The second 
formula says that the speed is the rate of change, or derivative (that is what 
the symbol  means), of the distance. Thus either one of the functions f (t) 
and F(t) can be calculated if you know the other.

It is as if one sailor sailed west from Europe to find China, and another 
sailed east from China to find Europe, and they met in the middle and 
shook hands at Panama. The first equation (metaphorically speaking) says 
that sailing west from Europe gets you to Panama, and the second one says 
that sailing east from China gets you to the same place.

W H Y  D I D  T H I S  �D I S C O V E R Y  open up a new continent of 
mathematics? It finally gave mathematicians absolute control over the 
concept of continuous change. Remember that continuous motion had 
puzzled the Greeks ever since Zeno put forth his famous paradoxes. 
Before Leibniz and Newton, mathematicians had been limited to static 
diagrams or discrete quantities. The world of continuous 
motion and continuously varying quantities was closed 
to them. But modern science is all about change.  
In calculus, mathematicians found the necessary 
vocabulary to do modern science.

Calculus is an immensely practical tool. Before Newton 
and Leibniz, finding an area or computing a slope was an 
unbelievably laborious process. But one of the benefits of 

Right Illustration from  
The method of fluxions  
and infinite series by  
Isaac Newton (1642–1727), 
first published in London 
in 1736.
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having two routes to Panama (to 
continue the analogy from above) 
is that you can pick the route that 
is more convenient. Very often, 
one route will turn out to be much 
more convenient.

With calculus, a mathematics 
student can now, in an afternoon, 
compute a better approximation 
of pi than Archimedes or Liu 
Hui. In fact, both Newton and 
Leibniz delighted in finding 
new expressions for pi and other 
constants. Tables of logarithms 
and sines—indispensible to 
mathematicians, engineers, and 
astronomers in the pre-computer 
age—could be computed routinely, 
and as precisely as patience 

allowed. Volumes, areas, and lengths of curves that had taken mathematicians 
centuries to figure out were now computable. Even as recently as the 1630s, 
Descartes had written that it was impossible to rectify a curve—that is, to 
find a straight line of equal length. With calculus, even a 
student can do it.†

Curiously, Newton was very reticent about discussing 
what he called the method of “fluxions.” He apparently 
discovered the Fundamental Theorem between 1664 and 
1666, but showed his work only  in bits and pieces to a 
handful of people. Mathematicians had not yet realised 
that publishing, not hoarding secrets, was the surest route 
to progress.

†	 Here I have to confess that an undergraduate student can only succeed in a relatively small number 
of cases. However, beginning in the 1800s and continuing to the present day, the more difficult cases, 
such as rectifying an ellipse or a lemniscate, led to deep and beautiful new theories.

Above Title page of 
“Acta Eruditorium Anno, 
1684,” Leipzig, 1684, in 
which appeared Gottfried 
Wilhelm von Leibniz’s 
paper on his discover of 
the differential calculus, 
“Nova Methodus pro 
Maximus et Minimus
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When Leibniz started thinking about rates of change and infinite sums 
in the 1670s, he surely had second-hand information about what Newton 
claimed he could do: namely, that he could compute infinite sums, areas, arc 
lengths, and so on. Sometime between 1673 and 1675, Leibniz unlocked the 
Fundamental Theorem, too. At this point he contacted Newton, to find out 
exactly what Newton knew, and proposed a sort of exchange of information: 
you tell me this, and I will tell you that.

Newton wrote back very cautiously, sending Leibniz only two letters. 
In the second, he divulged the Fundamental Theorem of Calculus—but 
concealed it in an indecipherable anagram. It is obvious that Newton did 
not want to share his discovery with Leibniz—he only wanted to be able 
to prove that he had gotten it first, in case Leibniz should later claim it as  
his own.

U N F O R T U N A T E L Y ,  T H A T  I S  E X A C T L Y  what then happened. 
Leibniz published his version of calculus in 1684 in a book called Nova 
methodus, while Newton, amazingly, waited until 1704 before publishing 
his first account of the method of fluxions. An extremely bitter dispute 
ensued over who should be known as the discoverer of calculus. English 
mathematicians supported Newton, while continental scholars mostly sided 
with Leibniz. Each side accused the other of plagiarism. 

The consensus of modern historians is that they both were wrong, and 
they both were right. There was no plagiarism on either side, and both men 
independently made the same discovery. Newton undoubtedly was aware of 
the Fundamental Theorem first, but as I have said before, it does no good to 
discover America and then keep it to yourself. Leibniz was the first to tell 
the world about calculus. Partly for that reason, and partly because Leibniz’s 
notation was simpler, the notation we use today is almost entirely due to 
Leibniz. No one today talks about “fluxions” and “fluents”—the words died 
with Newton.
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of apples, legends … and comets
newton’s laws

Ask most people what they know about Isaac Newton, and there is a good 
chance that they will tell you about an apple falling from a tree. According to 
legend, Newton was inspired to formulate his universal law of gravitational 
attraction by witnessing the fall of an apple, and realizing that the same force 
that explained its motion could also explain the motion of the planets. In 
some more recent embellishments, perhaps Newton was inspired by being 
hit on the head by the apple.

Here is an equally unverifiable counterlegend, which first appeared in print 
in 1858, in a delightful English journal called Notes & Queries. According to a 
contributor named “W.”, Karl Friedrich Gauss—the leading mathematician 
of the day—dismissed the legend as follows: “The history of the apple is too 
absurd. Undoubtedly, the occurrence was something of this sort. There comes 
to Newton a stupid importunate man, who asks him how he hit upon his 
great discovery. When Newton had convinced himself what a noodle he had 
to do with, and wanted to get rid of the man, he told him that an apple fell 
on his nose; and this made the matter quite clear to the man, and he went 
away satisfied.”

What is one to make of such legends? In reality, there is more substance 
to the apple story than Gauss realized (if the quote from him is authentic). 
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The story is attested by two sources, one of whom was the famous French 
writer Voltaire, who heard it personally from Newton’s niece. Hardly the 
sort of “stupid importunate man” that Gauss envisioned! One might think of 
the story as a highly encoded version of what actually happened. If you do 
not know the code, then you end up with the cartoonish story that Gauss so 
vigorously objected to.

Was there an apple tree? Yes. It was located at Isaac Newton’s homestead 
in Woolsthorpe, England. He had lived there until 1661, when he went to 
Trinity College at Cambridge, and most importantly he returned there in 
1665, when the last major outbreak of plague struck England. For close to 
two years Newton remained in his rural sanctuary. Those were the two years 
during which he developed the basics of calculus and began thinking about 
planetary motions. Newton wrote, “In those days I was in the prime of my 
age for invention and minded Mathematics and Philosophy more than at 
any time since.”

However, Newton did not need the fall of an apple for inspiration. Gauss 
was right about that. Newton was surely inspired by the problem itself, 
which already had centuries of history behind it. Did the Moon, the Sun, 
and the planets require some sort of external agency to make them move? 

The first equation is Newton’s Second Law of Motion, the second is Newton's 
Law of Universal Gravitation. In both equations, F represents a force. The 
symbol a represents the acceleration of an object with mass m. In the law of 
universal gravitation, F is specifically the gravitational force between masses m 
and M, while r represents the distance between the objects. G is the universal 
gravitational constant, 6.672 × 10-8 cm3 g-1 sec-2. 
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If so, what was it? Aristotle had argued that heavenly bodies were made 
of different stuff than Earth, and that their natural motion was circular.  
Kepler thought that a propulsive force was needed to keep the planets in  
their orbits. Descartes more or less agreed; in his elaborate theory, the 
universe was composed of vortices that swept the planets along in their 
orbits. It is only natural that Newton, as a young scholar, 
would have been passionately interested in one of the 
leading scientific debates of the day. He worked out a 
system in which apples are subject to the same forces as 
planets. (This is why the apple is important! It refutes 
Aristotle.) And remarkably, the planets are in free fall at all 
times; they require no propulsion. (This refutes Descartes 
and Kepler.)

While the apple story has some merit, it fails to explain how Newton 
convinced the rest of the scientific world that his theory was correct. His 
masterpiece, The Mathematical Principles of Natural Philosophy (often called 
the Principia after its Latin title), set out to do for physics exactly what Euclid 
had done for geometry. At the very outset Newton stated three axioms: three 
laws of motion that all material objects obey, whether they be apples or 
moons. Later he added the law of universal gravitation, which quantifies 
how objects attract one another through gravity. From these principles alone, 
he proved that planets orbiting the Sun obey Kepler’s three laws.

In fact, Kepler’s first law is probably the main reason Newton wrote 
the Principia. Several other physicists—notably Newton’s rival Robert 
Hooke, the architect Christopher Wren, and the Dutch physicist Christian 
Huygens—had also arrived at “Newton’s” law of universal gravitation by the 
early 1680s. But they had been unable to show that the law causes planets 
to orbit in ellipses; they could only account for the mathematically much 
simpler case of circular orbits. In 1684, Newton’s friend Edmund Halley 
asked Newton if he could prove that planets had elliptical orbits. Newton 
said that he could, and Halley cajoled him into putting his argument into 
print. The result, three years later, was much more than the solution of one 
problem; it was the blueprint for all future physics books.

Halley, who paid for part of the printing costs out of his own pocket, was 
eventually rewarded for his efforts in a very unique way. Newton’s theory 

Opposite The first 
reflecting telescope, made 
by Issac Newton in 1668, 
stands by his manuscript 
of Principia Mathematica.
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applies to comets, as well as to apples and planets. (In fact, Newton himself 
emphasized this point.) Because comets follow elliptical orbits, they must 
return over and over again. Halley realized that one comet in particular had 
been seen repeatedly at roughly 75-year-intervals: in 1456, 1531, 1606, and 
1682. Thus he predicted, correctly, that it would return in 1758 (long after his 
own death). It has continued to return every 75 to 76 years ever since then, 
and is now known as Halley’s Comet.

N E W T O N ’ S  F I R S T  L A W  �states that a moving object will continue 
moving in a straight line forever, unless some external force stops it or 
changes its path. This seems quite surprising at first: after all, golf balls don’t 
keep going forever, and planets don’t move in straight lines. In both cases, 
the reason is that there are external forces acting on the object. In the case 
of the golf ball, the forces are gravity, wind resistance (while the ball is in the 
air), and friction with the ground after it lands. In the case of planets, the 
hidden force is the Sun’s gravity.

Newton’s second law says that the force on an object equals the rate of 
change of its momentum. In the language of calculus, we would say that: 

recalling that d/dt denotes the rate of change and mv (where m is the mass of 
the object and v is its velocity) denotes the momentum. In most applications 
the mass of the object does not change, and in this case Newton’s second law 
becomes F = ma (i.e., force equals mass times acceleration), a formula that is 
today memorized by every beginning physics student. 

Newton’s third law, “for every action there is an equal and opposite 
reaction,” is somewhat less often used by physicists than the first two, but it 
explains, for example, why a rocket works. The action of propelling exhaust 
out of the rocket’s nozzles creates a reaction: the acceleration of the rocket in 
the opposite direction.

Collectively, these three laws explain how all forces affect the motion of 
all solid bodies. On the other hand, Newton’s law of gravitation pertains to 
one force only, the force of gravity. It states that the gravitational attraction 
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between any two objects, one of mass M and the other of mass m, is:

The denominator r2 indicates that the strength of the gravitational force 
is inversely proportional to the square of the planet’s distance (r) from the 
Sun. (This is the part of the formula that Hooke, Wren, and Huygens had 
already guessed.) The minus sign and the vector r∧  (read as “r-hat”) indicates 
that the direction of the force is toward the Sun. In other words, Kepler and 
Descartes were wrong. There is no force pushing the planets forward in their 
orbits, only a gravitational force pulling them to the side (that is, toward  
the Sun).

Newton’s truly novel accomplishment was his ability, using calculus,‡ to 
combine the law of gravitation with his laws of motion to set up—and then 
solve—equations describing a planet’s orbit. Together, his physical insight 
and his mathematical tools ushered in a new era of celestial dynamics, when 
the motion of planets—and eventually, rockets and spacecraft—could be 
predicted and controlled, rather than merely observed. 

‡	 It is often claimed that Newton deliberately avoided the use of calculus in the Principia, rewriting 
all the proofs in terms of Euclidean geometry. It is true that he avoids the notation of calculus, but his 
work is fully imbued with the ideas of calculus. 
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the great explorer 
euler’s theorems

In 1988, the magazine Mathematical Intelligencer organized a poll to 
determine the most beautiful mathematical theorems in history. Amazingly, 
four of the top five theorems on the list were proved by the same man: 
Leonhard Euler. Even more remarkably, it is easy to come up with a half-
dozen more theorems by Euler that could have made the list. In fact, Euler 
authored more than 800 articles and about 50 books and memoirs. The 
Academy of Sciences in St. Petersburg (where he spent the last 17 years of 
his life) was unable to keep up with his output, and continued publishing 
articles by Euler for half a century after his death!

Leonhard Euler was born in Basel, Switzerland, in 1707, and remained 
proud of his native country and town throughout his life, even though he 
never again set foot in Basel after age twenty. He had the good fortune 
to come of age in an era when mathematics was beginning to turn from 
a scholarly pursuit into a profession. England’s Royal Society had been 
founded in 1660, and the French Academy of Sciences soon afterward, in 
1666. Gottfried Wilhelm Leibniz, after returning from France, persuaded 
King Frederick I to establish the Prussian Academy of Sciences in 1700. By 
the early 1720s, when Tsar Peter I of Russia was building his new capital 
at St. Petersburg, an academy of science was almost de rigueur for a royal 
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court. Monarchs had begun to realize that mathematicians and scientists 
could play an important role in building their countries’ infrastructure and 
military prowess.

In 1724, Peter I founded the Russian Academy of Sciences and invited a 
number of foreign scientists to move to his raw new capital. At that time, 
the opportunities for a mathematician in Switzerland were limited, so Euler 
seized the opportunity. During his first period in Russia, from 1727 to 1741, 
Euler’s reputation throughout Europe rose rapidly. In 1735, he stunned the 
world of mathematics by evaluating an apparently simple infinite sum,  that 
no one had been able to crack:

demonstrating that it is equal to:

 

Euler’s argument is explained in masterful fashion in George Pólya’s 1954 
book Mathematics and Plausible Reasoning, Part I. For readers who know their

The number e = 2.718281828459045… is the base of the natural 
logarithm function and the second most ubiquitous constant 
in mathematics, after p. The letter i represents the imaginary 
unit, . The functions cos, and sin are the cosine 
function, and sine function respectively. 
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trigonometry and have some knowledge of infinite series, it is one of the best 
expositions of how a mathematical genius thinks (both Pólya and Euler).

Euler continued to move from triumph to triumph. His book Mechanica, 
published in 1736, took mechanics out of the realm of Euclidean geometry, 
where Newton had awkwardly placed it, and rephrased it in the much more 
appropriate language of calculus. In 1738, Euler won the Grand Prix de 
Paris competition for the first time.* During this period, Euler introduced 
notation that is used by all mathematicians today: e for the base of the 
natural logarithms, i for √–1 and f(x) for functions.

Unfortunately, after Empress Anna died in 1740, a backlash set in against 
the foreigners whom Peter had invited to “cut a window through to Europe.” 
Euler found his situation increasingly untenable, and accepted an invitation 
from Emperor Frederick II of Prussia to join the academy of sciences in 
Berlin.

If Euler in St. Petersburg was an up-and-coming star, Euler in Berlin was a 
mature scientist at the height of his power. Among other things, during this 
period he resuscitated Fermat’s number theory and re-proved most of the 
things that Fermat had claimed to prove (except, of course, 
the Last Theorem). He worked out how Newton’s laws of 
motion apply to fluids, deriving what are still known as 
Euler’s equations of hydrodynamics. He published books 
on topics ranging from calculus to naval science. And he 
worked on some of the ongoing puzzles of astrophysics.

Although Euler prospered in Berlin, the one person he never managed to 
impress was his employer. The mercurial monarch, Frederick II, was greatly 
attracted to pomp and culture, particularly French culture, and he could not 
abide the stolid Swiss mathematician in his court. Though he conceded that 
Euler was “useful,” Frederick compared him to a Doric column, “anything 
but elegant.” On another occasion, he wrote to Voltaire, “We have here a 
great Cyclops of mathematics,” referring unkindly to the fact that Euler  

*	 For well over a century, the most prestigious honors in mathematics were international 
competitions, organized by the national academies of science, in which papers were solicited on a 
particular topic. Euler won his first Grand Prix de Paris in 1738 for a paper on the nature of fire, and 
subsequently won eleven more (a record, of course).

Opposite Hand-colored 
engraving of Swiss 
mathematician Euler,  
ca. 1770.
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had lost the vision in his 
right eye. Euler longed to 
become president of the Berlin 
Academy of Sciences, but it 
was clear that under Frederick 
II this would never happen, so 
in 1766 he accepted Empress 
Catherine II’s invitation to 
return to Russia.

During the last years of his 
life Euler’s work continued 
unabated, even though a failed 
cataract operation in 1771 left 
him nearly blind. He gradually 
withdrew f rom the St. 
Petersburg Academy because 
of internal politics. However, 
in 1783, the last year of Euler’s 

life, Princess Ekaterina Dashkova took over the directorship of the Academy 
and insisted on making her entrance with him. When she realized that the 
seat next to hers was taken, she wrote, “I therefore turned to Mr. Euler and 
told him to sit down where he thought fit, for any place he occupied would 
always be the first.” Euler had finally found a place where he was appreciated. 

T W O  H U N D R E D  Y E A R S  �L A T E R , mathematicians still appreciate 
him. Let us take a look at the four theorems of Euler that the readers of 
Mathematical Intelligencer rated in the top five of all time:

eiπ + 1 = 0 (or eiπ = –1) Surely one of the most paradoxical 
statements in mathematics, it is often written in the 
former way because this allegedly “unifies” the five most 
important constants of mathematics: 0, 1, π, e, and i. 

Here is what the “most beautiful equation in history” 
really means. Probably the most important function in 
calculus is the exponential function exp(x), because it is 

Above Title page of the 
first edition of Leonhard 
Euler’s Methodus 
Inveniendi Lineas Curvas, 
1744, on the creation of the 
calculus of variations. 
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the only function that is its own derivative and its own integral. The name is 
apt because the values of the function are all powers of the number exp(1). 
For instance, exp(2) = (exp 1)2, exp(3) = (exp 1)3, and so forth. To save 
space, we can call the number exp(1) “e”, as Euler did. Then the seemingly 
nonsensical number eπ (e multiplied by itself π times, whatever that means) 
can be defined as exp(π). Because the function exp(x) is defined by calculus 
it can be computed using calculus. Thus we can determine that exp(π) = 
23.1406…

But what does it mean to raise a number to an imaginary power? How do 
we multiply 23, or indeed any other number, by itself √–1 times? Surely this 
is mathematics run amok.

Again, the trick is not to think of numbers but functions. Euler knew a 
way to write the function exp(x) as an infinite sum. With this equation, it 
was a simple matter for Euler to substitute ix in place of x, keeping in mind 
that i2 = –1, i3 = –i, i4 = 1, and so forth. The result is:

Separating the terms without i from the terms with i, Euler instantly 
recognized the second and third most important functions of calculus, the 
sine and cosine functions:

exp(ix) = cos(x) + i sin(x)

This is the formula that Euler himself considered important! It is featured 
in his calculus textbook of 1748. Nowhere in that textbook, or anywhere else, 
did he write the equation that has become associated with his name (eiπ = 
–1). Euler understood that calculus was about functions, not about numbers. 
However, we can get the “number version” of his formula easily enough by 
the final step of substituting x = π. Then eiπ = exp(iπ) = cos(π) + i sin(π) = –1 
+ 0i = –1.

Beauty is, of course, in the eye of the beholder. The readers of Mathematical 
Intelligencer preferred the numerical formula because it relates the five 
fundamental constants of mathematics. One could argue that the version 
with exp, cos, and sin is much more beautiful, because it relates the three most 
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fundamental functions of calculus, functions 
that have likewise been studied for centuries. 
Furthermore, it explains the meaning of the 
otherwise opaque equation, eiπ = –1. Surely a 
formula that helps us understand mathematics 
better is much more beautiful than a formula 
that only mystifies us.

V – E + F = 2. Second in the Intelligencer poll was this 
elegant formula, which relates the number of vertices 
(V), edges (E), and faces (F) of any polyhedron. For 
example, a cube has 8 vertices, 12 edges, and 6 faces; 
and, sure enough, 8 – 12 + 6 = 2. As it turns out, this equation has exceptions 
that Euler was not aware of. For a doughnut-shaped polyhedron, for instance, 
V – E + F = 0, not 2. With hindsight, it is clear that this equation marked the 
beginning of a new branch of mathematics called topology, which flourished 
in the twentieth century. The number V – E + F is now called the Euler 
characteristic. It is a “topological invariant” that distinguishes one two-
dimensional surface from another. Sphere-shaped surfaces always have Euler 
characteristic 2; doughnut-shaped surfaces always have Euler characteristic 
0; pretzel-shaped surfaces have Euler characteristic –4, and so on.

The infinitude of prime numbers. This was an ancient discovery, known 
to Euclid, but Euler discovered a radically different proof, which not 
surprisingly uses the concepts of functions and infinite series that were so 
dear to him. The proof involves the zeta function, ς(x) = 1 + 1/2x + 1/3x + 
1/4x + … Euler showed that this infinite sum is also equal to Euler’s product:

The product in the denominator runs over all prime numbers (2, 3, 5, 7, 
…). For number theorists, Euler’s product is probably the most important 
formula ever discovered. Most of what we know about the distribution of 
prime numbers comes from the careful study of the zeta-function: a theme 
that will be returned to later.

Above A cube has 8 vertices,  
12 edges, and 6 faces.
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The Basel Problem. Finally, the fourth of Euler’s equations, which was 
fifth place in the list, was the formula, already mentioned, that cemented  
his reputation: 

The discerning reader will notice that the left-hand side is actually 
ς(2), and might even wonder if Euler’s product for the zeta function has 
something to do with this formula. To the best of my knowledge, the answer 
is no. Euler actually derived it from an infinite product representation for the 
sine function, rather than the zeta function.

T H E  I N T E L L I G E N C E R  L I S T  was, possibly, somewhat biased toward 
pure mathematics. There aren’t very many formulas on this list that are used 
in non-mathematical applications. And that’s a pity, because Euler could 
do it all. He developed the first theory of hydrodynamics; he studied the 
buckling of elastic rods; he even worked on the optimal placement of masts 
in ships (a very important practical problem of the day). It is doubtful that 
he saw much of a distinction between mathematics that was done for its own 
beauty and mathematics that was done to solve a practical problem. 

Finally, as math historian Jeremy Gray points out, one of Euler’s most 
important contributions to math was not an equation at all. Part Two has 
described throughout how controversies arose and progress slowed because 
mathematicians, for one reason or another, were reluctant to share their secrets. 
It is the one thing that del Ferro, Tartaglia, Galileo, Fermat, and Newton all had 
in common. Euler was the one shining exception. He published abundantly; 
he was willing to step aside and give others credit; his articles routinely 
delivered more than they promised. He led by example, and helped transform 
mathematics into what it is today—a profession where information is  
not proprietary but is (with some unusual and unfortunate exceptions) 
openly shared.

Above A cube has 8 vertices,  
12 edges, and 6 faces.
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If� you ever go to Dublin, 
Ireland, take a bus to Broombridge Road and get off at the Royal Canal. 

You may not realize it, but you have just arrived at the site of the most 

famous mathematical graffiti in history.

From street level, the stone bridge that the road takes its name from 

is small and nondescript, but if you descend to canal level and walk to 

the west side of the bridge, you will find (along with lots of modern, 

spray-painted graffiti) a plaque with the following inscription:

“Here, as he walked by on the 16th of October 1843, Sir William 

Rowan Hamilton in a flash of genius discovered the fundamental 

formula for quaternion multiplication i 2 = j 2 = k 2 = ijk = –1 & cut it on 

the stone of this bridge.”

To be honest, no one knows if Hamilton really did carve his formula 

into Brougham (pronounced “broom”) Bridge. The source of the story 

is a letter that he wrote to his son, Archibald, many years later, and like 

many family stories it may have been embellished. However, there is 

no doubt of Hamilton’s excitement over the discovery of quaternions, 

which he considered the greatest of his life. 

Hamilton became so besotted with his creation that he spent the 

rest of his life studying the equations. Viewed from more than a 

century later, the discovery was in fact a turning point in mathematical 

history, but in a subtler way than Hamilton could have anticipated. 

They were the first example of a new algebra, created entirely 

out of one person’s imagination. This step, along with the nearly 

simultaneous discovery by other mathematicians of new geometries 

and new functions, liberated mathematicians from traditional 

structures (and strictures). For the first time, they could venture 
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beyond the real world—they were free to invent entire new worlds.

Before the nineteenth century, there was only one algebra and one 

geometry. The idea did not even occur to mathematicians to invent 

anything different. It is true that the concept of “number” had gradually 

expanded over the centuries, first to include irrationals, then zero 

and negatives, and finally imaginary numbers. But these new kinds of 

number were annexed only with great difficulty, and only after bitter 

debate. They were accepted only because they were indispensible. 

Similarly, calculus was a revolutionary technique but it did not involve 

the creation of a new geometry. Newton’s concept of space was exactly 

the same as Euclid’s. 

All of this changed in the nineteenth century. It was a revolutionary 

era, in mathematics as in the outside world. Beginning with the French 

Revolution, European societies were scrapping their old political 

structures and creating new ones. Likewise, mathematicians began 

trying out new structures that directly contradicted axioms they had 

been using for centuries. It was an era when Mary Shelley could write 

her novel, Frankenstein; or the Modern Prometheus, warning of the 

dangers of scientists playing God. Mathematicians became modern-

day Prometheans, like Dr. Frankenstein, although their creations were 

not made of flesh and blood.

Hamilton would have deplored this development. Socially he was 

conservative, a supporter of the English Crown in an Ireland that was 

starving and chafing under English domination. Mathematically, he 

invented quaternions in order to understand Euclidean space, not 

in order to create a new algebra. Nevertheless, revolutions are often 

begun by people who have no inkling of what they are starting.
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the new algebra
hamilton and quaternions

Born in 1806, William Rowan Hamilton was a child prodigy who knew 
all the European languages, as well as Hebrew, Latin, Greek, and others, 
by the time he was ten years old. Hamilton was an enthusiastic amateur 
poet throughout his life, and was a close friend of the English poet William 
Wordsworth. It was Wordsworth who delicately, but wisely, advised 
Hamilton that he had more to offer the world as a scientist than as a poet. 

In 1827, Hamilton was appointed Royal Astronomer of Ireland—even 
though he had not yet graduated from university! The appointment had 
more to do with his research on optics than his interest in astronomy. He 
had already published papers on optics as an undergraduate, and five years 
later he made a sensation with his discovery of conical refraction. Certain 
kinds of crystals, which are called birefringent, can split a light beam up into 
two separate beams. Hamilton proved mathematically that if the angle of 
incidence was just right, the beam would split up not just into two beams, but 
into a hollow cone of light. Later that year Humphrey Lloyd demonstrated 
conical refraction in his laboratory. It was one of the first times that a new 
physical phenomenon had been deduced by pure mathematics first, and 
confirmed by experiment second. After this breakthrough, Hamilton was no 
longer just a prodigy; he was one of Great Britain’s scientific heroes.
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Hamilton’s other great discovery, quaternions, had a much longer and 
stranger history. Sometime around 1830 Hamilton began looking for a way 
of multiplying number triplets together. By this time the multiplication and 
division of number pairs, or complex numbers, had proven itself to be not 
only possible but an essential part of mathematics. Any two such pairs, say (a 
+ bi) and (c + di), can be multiplied or divided, using the rules of algebra plus 
the miraculous identity i2 = –1:

 
But there was another motivation for multiplying number triples. Hamilton 
knew that complex multiplication has a geometric meaning, quite apart from 
its origins in algebra. For example, the algebraic operation “multiply by i” is 
the same as the geometric operation “rotate by 90 degrees counterclockwise.” 
More generally, the instruction “multiply by (a + bi)” can be broken down 
into two steps—a rotation and a dilation. This interpretation takes a lot of the 
mystery out of complex numbers. Some people may have trouble imagining a 

i, j, k represent imaginary units. Multiples of 
these units can be added to real numbers to form 
quaternions, a + bi + cj + dk. The above multiplication 
rules will then uniquely define the product (and, with 
a little work, the quotient) of any two quaternions.
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number whose square is –1, 
but everybody knows that 
two 90-degree rotations give 
a 180-degree rotation. Not 
only that, this description 
makes the invertibility of 
complex multiplication 
completely obvious. To 
undo the operation “rotate 
counterclockwise by 72 
degrees,” you simply rotate 

clockwise the same amount. To undo the operation “enlarge to 150 percent,” 
you reduce to 67 percent.

Alas, complex numbers are limited to representing operations in a plane. 
They are great for manipulating two-dimensional photographs, but not 
three-dimensional reality. Hamilton was convinced that 
there must be an algebra of three dimensions as powerful 
as the two-dimensional algebra of complex numbers. 
But until 1843, he was stymied. The rock on which all 
his attempts foundered was division. No matter how he 
defined the multiplication of number triples, he was not 
able to divide them.

And then came Hamilton’s Monday stroll across Brougham Bridge. What 
he suddenly realized—although his calculations must have subconsciously 
been leading him to this point—was that introducing a fourth number 
makes both multiplication and division possible.

Thus Hamilton proclaimed: Let there be three imaginary units, i, j, and k. 
Let them go forth and multiply using the following rules:

Then one can add, subtract, multiply, and divide any two quaternions,  
(a + bi + cj + dk) and (w + xi + yj + zk), just by following the normal rules of algebra. 
Division is the trickiest part, of course. It turns out that 1/(a + bi + cj + dk) equals  
(a – bi – cj – dk)/(a2 + b2 + c2 + d2), as you can check by multiplying both sides by  

Above The plaque on 
Brougham Bridge, 
Dublin, commemorating 
Hamilton's quaternion 
equation.
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(a + bi + cj + dk). Don’t even think about what the imaginary numbers i, j, and 
k mean—just do it and you’ll see that it works.

S U C H  A  W A N T O N L Y  �Promethean act had almost never been seen 
before in mathematics. Hamilton’s colleagues were aghast, though they could 
not find anything wrong with it. “There is still something in the system which 
gravels me,” wrote his friend John Graves. “I have not yet any clear view as to 
the extent to which we are at liberty arbitrarily to create imaginaries, and to 
endow them with supernatural properties.” 

Hamilton spent the remaining 22 years of his life proselytizing the 
importance of quaternions. He wrote a 700-page book about them but then, 
convinced it was too difficult, started a shorter “manual” for students—which 
grew to more than 800 pages and lay unfinished when he died. 

However, quaternions fell from popularity for a variety of reasons. First, 
Hamilton had intended to find an algebra of three-dimensional space. What, 
then, did the fourth dimension of a quaternion mean? Hamilton argued that 
it could represent time*—and in so doing, he became the first scientist to 
merge time and space into a single “spacetime.” However, physics had not yet 
matured to the point where it needed this concept; it would have to wait for 
the twentieth century and Albert Einstein. 

A second blow �to quaternions was the development of vector analysis 
in the 1870s, by Oliver Heaviside (an Englishman) and Josiah Willard 
Gibbs (an American). Heaviside and Gibbs dispensed with the imaginary 
quantities entirely, and simply represented points in space by a triple of 
numbers, (a, b, c), called a vector. Instead of one multiplication, they defined 
two different vector multiplications, the dot product and the cross product. 
Neither one of them is invertible, and in fact the dot product of two vectors 
isn’t even a vector—it’s a real number. However, what they lack in elegance, 
vectors make up for in practicality. They are well adapted to the problems of 
physics and engineering. After a series of polemics in the 1890s between the 

*	 It is a splendid irony that in Hamilton’s quaternions, the three dimensions of space—the i, j, and k 
dimensions—are imaginary while time is the real coordinate (i.e., the number a in the expression a + bi 
+ cj  + dk). The real world and imaginary world have switched places!
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quaternionists and the vector analysts, the analysts won. A typical example 
is this scathing comment from William Thomson, Lord Kelvin, in 1892: 
“Quaternions came from Hamilton after his really good work had been 
done; and though beautifully ingenious, have been an unmixed evil to those 
who have touched them in any way, including Clerk Maxwell.” Nowadays, 
you will never see a quaternion in a freshman physics book.

One reason that vectors won is that neither Hamilton nor his followers 
really understood what quaternions were, and therefore they were trying 
to use them the wrong way. Just as complex numbers represent geometric 
operations (rotations and dilations in a plane), quaternions represent rotations 
and dilations of space. Thus, they are not vectors. A vector is something that 
is acted upon by rotations. Quaternions are the rotation itself. 

H A M I L T O N  N E V E R  F I G U R E D  O U T  the difference. That was left 
to a twentieth-century mathematician, Elie Cartan, who named this kind of 
quantity a spinor (discussed in Part Four) to distinguish it from vectors. His 
findings vindicate Hamilton’s belief in quaternions, even though he did not 
grasp their significance. The key point to bear in mind is that quaternions 
are the very best way to represent anything that spins in three dimensions. 
That includes protons, neutrons, and electrons—the building blocks of our 
physical world. Of course, the existence of these subatomic particles was not 
even suspected in Hamilton’s time. He had discovered the right mathematics 
almost a century before it would be needed.

But one immediate effect of quaternions, as mentioned above, was to 
liberate mathematicians to think about other kinds of algebra. Quaternion 
multiplication violates one previously unquestioned rule of algebra. It is not 
commutative; that is, the product of two quaternions is sensitive to the order 
in which they are multiplied. For example ij is equal to k, but ji is equal to –k. 
This was the first known example of a non-commutative algebra.

Hamilton’s friend Graves soon got over his uneasiness and discovered 
an algebra of 8-tuples, or octonions. These are even more finicky than 
quaternions, because products of three octonions are sensitive not only 
to the order of the octonions but also to their grouping. If a, b, and c 
are real numbers, or complex numbers, or even quaternions, then (ab)
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c = a(bc), but for octonions, (ab)c is usually not equal to 
a(bc). The independence of grouping was a property 
that mathematicians had always assumed without even 
realizing it; Hamilton had to make up a new word for it—
the associative law. It might seem as if the next step would 
be an algebra of 16-tuples. However, each doubling of the 

number of dimensions comes with a sacrifice. Going from 2 dimensions 
to 4, you lose commutativity. Going from 4 dimensions to 8, you lose 
associativity. And going from 8 dimensions to 16, you lose division. At this 
point, Hamilton’s program of defining hypercomplex numbers breaks down, 
because the one thing he always insisted on was division.

Other mathematicians had no such compunctions. Once the floodgates 
were opened, anything was possible. You can have algebraic structures with 
three operations (addition, subtraction, multiplication) called rings; or with 
two operations (addition and subtraction, or multiplication and division), 
these are known as groups;  or you can even pare it down to one operation; 
these structures are called monoids. With such a variety of algebraic 
structures to choose from, the question becomes not what is possible, but 
what is worth studying. Does a new structure help solve pre-existing 
problems? Does it have a deep, challenging, inherently beautiful theory? One 
new algebraic structure that has consistently scored high on both criteria is 
the concept of a group—and that is what will be discussed next.

Above Quaternionic 
fractals. Computer-

generated image derived 
from a Julia Set in 
quaternion space.
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two shooting stars
group theory

In the early nineteenth century, mathematics lost two of its brightest talents 
at a very young age, a 26-year-old Norwegian and a 20-year-old Frenchman. 
Niels Henrik Abel and Évariste Galois were linked by more, though, than 
their untimely deaths. They combined to give a definitive answer to one of 
the most classical questions in mathematics: Is there a universal version of 
Cardano’s formula for the cubic (which I discussed in Part Two, page 61)? 
In the process, they opened up a new branch of mathematics, which we now 
call group theory.

Abel was born in 1802, the son of a long line of country clergymen. His 
childhood was a complicated time politically for Norway, which was a sort 
of pawn of the Napoleonic Wars. After almost 300 years of relatively benign 
Danish rule, Norway briefly became an independent state in 1814, but later 
that same year its parliament voted to recognize the Swedish king. Abel’s 
father, twice elected to parliament, became a lightning rod for scandal 
because of his minority pro-independence views. After Abel’s father died in 
1820, his alcoholic mother left with another man, and Niels and his siblings 
were left in poverty.

Fortunately, Abel’s teachers recognized and encouraged his talent for 
mathematics. By the time he finished his university studies, it was clear to 



115

Gal (K/Q) = S5

E Q U A T I O N S  I N  A  P R O M E T H E A N  A G E    

them that his abilities were much beyond any position that could be found 
for him in Norway. The faculty persuaded the Swedish king to give Abel 
a two-year travel stipend to visit Europe’s leading centers of mathematics: 
Göttingen (in Germany) and Paris. Abel’s extended Wanderjahr, from 1825 
to 1827, started very auspiciously. One of the first people he met in Germany 
was Leopold August Crelle, who was about to start a new journal called 
Journal of Pure and Applied Mathematics, often simply known as Crelle’s 
Journal. However, Abel failed to impress the other leading mathematicians 
of the day, such as Karl Friedrich Gauss in Germany and Augustin-Louis 
Cauchy and Adrien-Marie Legendre in France. During his visit to Paris in 
1826, Abel submitted what he considered his most important paper to the 
Parisian Academy of Sciences. Cauchy apparently lost it in a desk drawer, 
and it was not printed until 1841, long after Abel’s death.

By the time Abel got back home to Norway his other articles had 
started appearing, in rapid-fire succession, in Crelle’s Journal. The Parisian 
mathematicians were astounded, first to read a series of breakthrough papers 
by an unknown mathematician from the hinterlands; then to learn that 
this mathematician had actually been in Paris; and finally, to learn that he 
had tried to present them a paper and they had lost it! Legendre sent his 

Gal(K/Q) represents the Galois group of a 
polynomial over the rational numbers Q. 
S5 represents the group of all 120 possible 
permutations of five objects. Whenever a 
polynomial has a Galois group equal to S5, the 
polynomial cannot be solved using the five basic 
operations: +, –, ×, ÷, and n-th roots.
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apologies to Abel, and along with three other mathematicians petitioned 
the Swedish king to find some way to assist “a young Monsieur Abel, whose 
works show he has mental powers of the highest rank, and who nevertheless 
grows ill there in Christiania [Oslo] in a position of too little value for one of 
his rare and early-developed talent.”

Unfortunately, the rumor that Legendre and the others had heard about 
Abel’s ill health was true. By 1828, Abel had developed tuberculosis, and in 
April of 1829 he died, just two days before a letter arrived from Crelle saying 
that he had arranged a professorship for Abel in Berlin.

É V A R I S T E  G A L O I S ’  S T O R Y  �is also one of unbelievably bad luck, 
compounded by poor judgment. Born in 1811 near Paris, he was apparently 
a very difficult student in high school, described by his teachers as “original” 
and “bizarre.” At the age of 17, he sent a paper on the solvability of 
polynomials to Cauchy—the same Cauchy who had lost Abel’s manuscript 
a couple years earlier. Galois’ paper was lost, too, though this time it was not 
Cauchy’s fault. “I cannot in truth conceive of such carelessness on the part 
of those who already have the death of Abel on their consciences,” Galois 
later wrote. The accusation is, of course, completely unfair. Though the loss 
of Abel’s paper was a scandal, the Academy was in no way to blame for 
Abel’s death and, as noted above, had even tried to intervene on his behalf. 
However, this invective does give us an insight into Galois’ character. He 
was a rebel against authority, and the Academy became for him a symbol of 
tyrannical power.

In 1829, Galois joined a revolutionary organization called the Society of 
the Friends of the People. The following year, rioting broke out in the streets 
of Paris, and King Charles X was forced to abdicate the throne. Extreme 
Republicans (such as Galois) wanted to abolish the monarchy altogether, but 
moderate Republicans led by the popular Marquis de Lafayette prevailed. 
They named Louis-Philippe as the “citizen king” of France, a king who 
would be bound by constitutional restrictions.

Galois was unable to participate in the July 1830 revolution because he 
was a student at the École Normale, and the school’s director literally locked 
the students in. However, by 1831 he had graduated, and he no longer had 
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to sit on the political sidelines. He 
was arrested twice that year, once for 
threatening the life of King Louis-
Philippe and the second time for 
participating (heavily armed) in 
a demonstration on Bastille Day. 
While he was in prison, he received 
news that the French Academy 
had rejected his latest paper on the 
theory of equations.

Galois was released from prison in 
April 1832, and by the end of May 
he was dead. The events that led to 
this outcome are far from clear. One 
historian has written a book arguing 
that it was a police-organized 
provocation, while others deny it. 
Galois himself wrote to his friends, 
in moving words, that he was forced to take part in a duel over a woman:

“I beg patriots, my friends, not to reproach me for dying otherwise than 
for my country. I die the victim of an infamous coquette and her two dupes. 

It is a miserable piece of slander that I end my life … I 
would like to have given my life for the public good. 
Forgive those who kill me for they are of good faith.”

On May 30, the day after Galois wrote this letter, he was 
shot in the stomach by a man whom the writer Alexandre 
Dumas identified as Pescheux d’Herbinville, a hero of the 

Republican cause. Galois’ opponent left him on the ground to die. He was 
found several hours later, still alive, but he died the following day.

A L T H O U G H  I T  I S  �T E M P T I N G  to wonder what Abel and Galois 
might have achieved if they had both lived, in fact they both accomplished a 
great deal in their short lives. Their lasting fame rests on the theorems they 
proved, and not on the way that they died.

Above Part of a manuscript 
written by the French 

mathematician Évariste 
Galois (1811–1832).
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Both Abel and Galois were fascinated by the problem of finding the 
solutions of polynomial equations. In Part Two, I recounted how Cardano 
“stole” the secret for solving cubic (third-degree) polynomials, and how 
his servant Ferrari subsequently discovered a method for solving quartics 
(fourth-degree). In both of these formulas, the solutions, or “roots,” 
can be expressed using only the operations of algebra (+, – ×, ÷, and  
nth roots for any n). Often the nth roots, or “radicals,” are nested inside  
one another, a square root inside a cube root inside a fourth root; this  
accounts for the term “solution by radicals.” However, no one in the 
intervening three centuries had found a universal solution by radicals for 
fifth or higher degree equations, and some were starting to suspect that no 
solution could be found.

It is difficult indeed to prove that a task is impossible. It is not just a matter 
of trying and failing to solve it. You must discover some inherent inadequacy 
of the tools that you have been given. In fact, Abel and Galois did not prove 
that quintic polynomials have no solutions. Instead, they proved something 
more subtle: that the five operations listed above are inadequate to express 
the solutions, assuming they exist. Their proofs involved a very deep and 
novel exploration of the idea of symmetry. 

Let’s start with the original quintic polynomial: 

Assuming that it has five roots, r1, r2, r3, r4, and r5, then each of the 
coefficients of the original polynomial is a symmetric function of the roots. 
For example:

and so on. Looking at these formulas, you may notice that each of the roots 
participates equally. More precisely, Galois observed that if you permute the 
roots in any way (e.g., by replacing r1 with r2 and r2 with r1), the expressions 
do not change. (The terms will be listed in a different order, but the sums 
will still be the same.). There are 120 different ways to permute five numbers 
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and thus a typical quintic polynomial has 120 symmetries. However, it is 
worth noting that some polynomials have fewer symmetries. (The reason 
is technical, but some permutations may be forbidden because of extra 
algebraic relations between some of the roots—for example, one root might 
be the square of another.)

Abel realized, and Galois clarified, that if a polynomial is solvable by 
radicals, it creates a hierarchy of intermediate polynomials and a hierarchy of 
“number fields” corresponding to the roots of those polynomials. This is the 
reason for the nesting of radicals within radicals in Cardano’s and Ferrari’s 
formulas; each time you peel off a radical (like peeling the layers of an onion) 
you move to a lower number field. The symmetries of the original polynomial 
have to respect this hierarchical structure. 

Now comes the difficult, but clinching point of Galois’ argument. The full 
group (a term coined by Galois) of 120 permutations of the roots does not 
allow a tower of subgroups of the requisite type. It’s as if you were trying 
to build a wedding cake 120 feet high; you can’t do it. As it turns out, the 
maximum height (the maximum number of allowable permutations for a 
quintic polynomial to be solvable by radicals) is 20. 

G A L O I S ’  S O L U T I O N  A C T U A L L Y  provided a clear-cut criterion 
to determine which polynomials can and which ones cannot be solved by 
radicals. If you have a polynomial whose “wedding cake” (or Galois group) 
has 20 elements or less, you can solve it. Galois thought that his criterion 
was hopelessly impractical—but nowadays, thanks to the computer, the 
calculation of the Galois group can be automated. Thus, for example, the 
Galois group for the polynomial x5 – x + 2 contains all 120 permutations, 
and therefore the solutions to the equation x5 – x + 2 = 0 cannot be written 
in terms of the five algebraic operations. 

The equation x5 – x + 2 = 0 does have solutions. They just can’t be expressed 
with the limited palette of +, –, ×, ÷, and radicals. In 1858 Charles Hermite 
proved that the solutions to any quintic can be written down by using a new 
kind of function, called elliptic functions, which Abel had discovered.

This is a normal human response to a problem: If you can’t overcome the 
difficulty with the tools you have, invent new tools. However, mathematicians 
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are not completely like ordinary people. Because their problems are often 
several steps removed from practical application, they often care more about 
how a problem is solved than whether it is solved. Abel’s and Galois’ proof 
that quintic equations cannot be solved by radicals has completely eclipsed 
Hermite’s discovery of how they can be solved by elliptic functions.

But there is another reason for the enduring fame of Galois’ proof. His 
concept of a group has now become the main tool that mathematicians use 
to express the ancient idea of symmetry. I find it very curious that the first 

explicit use of symmetry groups came in such a difficult 
context. It is as if no one had ever invented the wheel 
until the Wright brothers incidentally came up with it as a 
way to get airplanes off the ground. We would say, “Wow! 
Someone should have come up with that earlier!”

The idea of a symmetry group should be one of the most 
basic things in mathematics. In fact, the ability to perceive 

a symmetric object may even precede our ability to count. Perhaps its very 
obviousness made it difficult for mathematicians to discover. They could not 
formalize the meaning of symmetry until they encountered it in a context 
(the solution of polynomials) where its meaning was so far from obvious.

Fittingly, Galois’ legacy was every bit as revolutionary as the political 
causes that he fought for. The tool he invented, group theory, has more than 
fulfilled the visions of its creator. Chemists now use group theory to describe 
the symmetries of a crystal. Physicists use it to describe the symmetries 
of subatomic particles. In 1961, when Murray Gell-Mann proposed his 
Nobel Prize-winning theory of quarks, the most important mathematical 
ingredient was an eight-dimensional group called SU(3), which determines 
how many subatomic particles have spin 1/2 (like the neutron and proton). 
He whimsically called his theory “The Eightfold Way.” But it is no joke to 
say that when theoretical physicists want to write down a new field theory, 
they start by writing down its group of symmetries. 

Opposite Capturing 
symmetry: A panel of Isnik 

earthenware tiles from 
the baths of Eyup Eusaki, 
Istanbul, ca. 1550–1600.
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the geometry of whales and ants
non-euclidean geometry

At the same time that a revolution was going on in algebra, similar events 
were taking place in geometry. Two millennia earlier, Euclid had written 
down a short set of axioms from which, supposedly, all of geometry could be 
derived. These axioms were intended to be self-evident truths that did not 
require any proof.

For centuries Euclid’s Geometry was considered the ne plus ultra of 
deductive reasoning. The eighteenth-century philosopher Immanuel Kant 
built up a theory of knowledge, in which he cited Euclid’s geometry as an 
example of “synthetic a priori” truth—in other words, infallible knowledge 
about the universe that is derived from pure reason rather than observation.

However, one axiom had always appeared a little bit clumsier than the 
others. The axiom in question is the “Parallel Postulate,” which Euclid does 
not use until late in his first book: “If a straight line falling on two straight 
lines makes the interior angles on the same side less than two right angles, 
the two straight lines, if produced indefinitely, meet on that side on which are 
the angles less than two right angles.” This assumption is used, for example, 
to prove that the sum of the angles of a triangle equals 180 degrees.

Many mathematicians felt the Parallel Postulate was true but far from self-
evident, and thus a flaw in Euclid’s otherwise sterling system of axioms. They 
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took up the challenge of proving it from the other axioms that Euclid had 
provided. This mathematical grail quest lured the famous and obscure alike. 
Legendre (whom we have met already) believed that he had proved it. So, at 
one time or another, did less-famous mathematicians like John Wallis, John 
Playfair, Girolamo Saccheri, Johann Lambert, and Wolfgang Bolyai. In all 
cases, they made hidden assumptions that, under the harsh light of scrutiny 
by other mathematicians, were no better motivated than Euclid’s postulate.

In the first half of the nineteenth century, three men separately and 
independently dared to think the unthinkable. Perhaps a valid geometry 
might exist in which the Parallel Postulate was actually false. This would be 
a non-Euclidean geometry—that is, a geometry in which one of the axioms 
laid down by Euclid, more than two millennia earlier, is expressly violated.

This idea was just as heretical as Hamilton’s idea of an algebra with no 
commutative law. However, denying the Parallel Postulate took perhaps 
even more courage, because it had the great weight of Euclid, Kant, and two 
thousand years of tradition behind it.

The first of the three revolutionaries was Karl Friedrich Gauss, the most 
famous mathematician of his era. Gauss, a friend of Bolyai from their 
student years, dabbled at proving the Parallel Postulate in the early 1800s. 

dx and dy represent the sides of 
an “infinitesimal” triangle, and ds 
represents their hypotenuse.
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But gradually, around 1820, he seems to have become convinced that an 
alternative, non-Euclidean geometry could be constructed. However, he 
never published this idea, and only alluded to it somewhat vaguely in letters. 
The best evidence of his reasons comes from a letter he wrote in 1829 to 
his friend, Friedrich Bessel, in which he says that he feared the “howl from 
the Boeotians” (a pejorative term for stupid people) that would ensue if he 
published his work.

T H E  S E C O N D  D I S C O V E R E R  of non-Euclidean geometry was 
Janos Bolyai, the son of Gauss’s old school chum. Wolfgang, who became 
a mathematics teacher in Hungary, tried to warn his son against trying to 
prove the Parallel Postulate: “For God’s sake, I beseech you, give it up. Fear 
it no less than sensual passions because it, too, may take all your time, and 
deprive you of your health, peace of mind, and happiness in life.” But his son 
ignored the advice, and he eventually wrote a 24-page treatise on what he 
called the “absolute science of space,” which his father generously published 
as an appendix to one of his textbooks in 1832.

The elder Bolyai naturally sent a copy to his old friend Gauss, who 
responded in unexpected fashion: “To praise [this work] would amount to 
praising myself. For the entire content of the work, the approach which your 
son has taken, and the results to which he is led, coincide almost exactly with 
my own meditations … It was my plan to put it all down on paper eventually, 
so that at least it would not perish with me. So I am greatly surprised to be 
spared this effort, and am overjoyed that it happens to be the son of my old 
friend who outstrips me in such a remarkable way.”

In spite of the compliment at the end, it was a crushing blow to the younger 
Bolyai. Gauss was saying that his discovery of non-Euclidean geometry was 
nothing new. Janos never published another mathematical paper in his life. 
Not only had Gauss lacked the courage to publish the discovery himself, 
he had now compounded his mistake by discouraging an aspiring young 
mathematician who might have made a great name for himself.

Because Gauss was too reticent, and Bolyai gave up too easily, the third 
discoverer of non-Euclidean geometry deserves the most credit for bringing 
it to the world’s attention. He was Nikolai Ivanovich Lobachevsky, a Russian 
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mathematician who lived in Kazan, the ancient capital of the Tatars. He first 
published his version of non-Euclidean geometry in 1829 in a very obscure 
Russian journal, but unlike Bolyai he continued to write articles and books 
about it and finally succeeded in getting an article into Crelle’s Journal in 1837. 
Even so, he did not receive the kind of acclaim during his lifetime that one 
might expect. Today, however, Lobachevski is considered one of the first great 
Russian mathematicians, and in Russia his geometry is called Lobachevskian. 
Western mathematicians call it, more descriptively, hyperbolic geometry.

What exactly is hyperbolic, or Lobachevskian, geometry? I think that the 
best way to think about it is to forget all about the Parallel Postulate and 
about Euclid. You must especially forget about the prejudice that you have 
surely been brought up with, that Euclidean is the “natural” geometry of the 
real world. Hyperbolic geometry is no more artificial than Euclidean. Think 
of it as the geometry of the ocean. If whales had invented geometry, the 
geometry they would have invented would be hyperbolic.

Suppose, for a moment, that you are a whale. Light is not very useful in 
the deep ocean, because the water is dark. So you mostly communicate and 
experience the world through sound. The shortest distance between two 
points in your world would be the path taken by sound waves. To you, this 
would be the analogue of a straight line.

Now here’s the catch. Sound does not travel at a constant speed in the 
ocean. Below a certain depth, roughly 2000 feet (600 meters), it travels at a 
speed that is proportional to the depth below the surface. So the path that 
sound waves travel is not straight, but curved. A sound wave will get from 
whale A to whale B quicker if it goes downward, to exploit the greater sound 

Below Demonstration of the curves along which sound travels in the ocean.

A

B
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speed at depth, and then comes back up. In fact, we can be more precise 
about the nature of these curves: they are arcs of circles centered at the ocean 
surface! Thus, to a whale, what humans call a “circle” is actually a “line” (the 
shortest distance between two points). 

Whale Geometry is a geometry where some surprising (to us) things 
happen, but they would not be the least bit surprising to whales. The sum 
of the angles of a triangle is less than 180 degrees. Rectangles (four-sided 
figures with all right angles) do not exist; however, right-angled pentagons 
do. Most importantly, it is a geometry of negative curvature. This means that 
lines that start out parallel tend to move farther and farther apart.

A M A Z I N G L Y,  A N O T H E R  �non-Euclidean geometry, besides hyperbolic 
geometry, had been known for centuries—only no one ever thought of it in 
those terms. It is the geometry of a sphere. On the surface of a sphere (such 
as Earth), the sum of the angles of a triangle is greater than 180 degrees. 
Rectangles do not exist, but right-angled triangles do. Keep in mind the 
curvature of the Earth! For example, a triangle can be drawn with three right 
angles: start at the North Pole, travel in a straight line down to the Equator, 
then travel due east or west a quarter of the way around the globe, and then 
go due north again. You will trace out a triangle with three 90-degree angles. 
Spherical geometry is a geometry of positive curvature. In other words, lines 
that start out parallel (such as meridians, near the Equator) tend to move 
closer and closer together, and they eventually converge at the poles.

The reason that no one ever thought of spherical geometry as an alternative 
to Euclidean geometry is simple: We can see a sphere as being imbedded in 

three-dimensional Euclidean space, so its “non-Euclidean-
ness” is not immediately obvious. Suppose, however, that 

you were unable to perceive a third dimension beyond 
the surface of the sphere. For example, perhaps you 
are an ant, living on the surface of an asteroid with 
no oceans (so you can go anywhere you want to). You 
have no concept of space, no concept of underground; 

Left Spherical geometry and the curvature of the Earth.
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everything you know is the surface of your spherical world. The curvature of 
that world is positive and its geometry is non-Euclidean. We could call it 
Ant Geometry.

Instead of one geometry of nature, we can now see there is a whole 
spectrum of geometries with different amounts of curvature, ranging from 
Ant Geometry (spherical) to Human Geometry (Euclidean) to Whale 
Geometry (hyperbolic). But that’s not all. These are only the geometries 

of constant curvature. We can also imagine geometries 
whose curvature varies from place to place. They can be 
two-dimensional, three-dimensional, or even higher. 
Gauss (perhaps influenced by his unpublished thoughts 
on hyperbolic geometry) was the first mathematician to 
understand the concept of varying curvature in a two-

dimensional space, and his student Bernhard Riemann extended the concept 
to higher dimensions in 1854. Both of them thus anticipated one of the 
epochal discoveries of the twentieth century: Albert Einstein’s theory of 
general relativity, which postulates that our four-dimensional spacetime 
has curvature that varies from place to place. Without Lobachevski, Bolyai, 
Gauss, and Riemann, Einstein would never have been able to write down the 
equations for his theory.

Above An engraving 
displaying an “Allegory  
of Geometry,” by F. Floris, 
16th century.
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in primes we trust
the prime number theorem

Gauss’s mishandling of the discovery of non-Euclidean geometry was one of 
the few black marks on an otherwise remarkable career. He contributed so 
much to so many parts of the subject, and he virtually created the modern 
subject of number theory, which deals with the properties of whole numbers 
and especially with the solution of equations in whole numbers. 

Gauss was born in 1777 in Brunswick, Germany. As a child prodigy, 
Gauss attracted the attention of the Prince of Brunswick, who supported 
him through preparatory school and the University of Göttingen, where he 
earned his doctorate in 1799 with his first, not entirely satisfactory proof of the 
Fundamental Theorem of Algebra. (He later gave three more proofs.)

Gauss always had a special place in his heart for number theory, a subject 
he called the “queen of mathematics.” His earliest significant discoveries 
came in this subject. In 1796, still a student at the university, Gauss proved 
that a regular 17-sided polygon can be constructed by a ruler and compass—a 
discovery that had eluded the ancient Greeks, who first took an interest in 
such construction problems. Although it looks like a theorem of geometry, 
this theorem is closely linked to the solvability of polynomials.

The key question is whether the angle (360/17)º can be constructed with 
ruler and compass. If so, the 17-gon can be constructed simply by piecing 
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together 17 isosceles triangles with this angle at their vertex. As long ago 
as 1637, in his book La Géometrie (which Gauss had surely studied), René 
Descartes had found a simple criterion for constructability of a line segment. 
Namely, a segment can be constructed with a ruler and compass from a given 
line segment of unit length if its length can be expressed using only whole 
numbers and the five algebraic operations +, –, ×, ÷, and √. This should look 
somewhat familiar—it looks a lot like the toolbox for solving polynomial 
equations by radicals. But it is more restricted, because only square roots are 
allowed—no third or higher roots. Likewise, an angle is constructible if its 
cosine and sine are constructible lengths.

Gauss’s audacity is amazing. To prove that (360/17)º is a constructible angle, 
he solved the polynomial equation x17 = 1. At this point, in 1796, no one 
knew whether degree-five equations were solvable, even using cube roots, 
fourth roots, and fifth roots. Gauss was proposing to solve a degree-seventeen 
equation, with fewer tools. And he succeeded!

Five years later, in 1801, Gauss published his first book, Disquisitiones 
arithmeticae. It was the first systematic book on number theory, establishing 
its methods and identifying its interesting questions. His theorem on 
17-gons appears there, along with a generalization: an n-sided polygon 

The function π(n) [not to be confused with the number π] 
represents the number of primes less than n. The prime 
number theorem says that this total is roughly equal to 
the integral of a density function, 1/ln(x). Though it is only 
approximate, the formula gets more and more accurate (on 
a percentage basis) as n gets larger.
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is constructible if all of the odd prime factors of n are one greater than a 
power of 2, and furthermore are raised to only the first power. Only five 
such primes are known: 3 (21 + 1), 5 (22 + 1), 17 (24 + 1), 
257 (28 + 1), and 65,537 (216 + 1). This result is as far from 
being practically useful as any theorem can be. It would 
probably take a lifetime to perform the construction of a 
65,537-sided polygon, and when you finished it would be 
impossible to tell the result apart from a circle!

This example gives an inkling of the central role of prime 
numbers in number theory. These are the numbers that 
combine (by multiplication) to form all others, and in this sense they are as 
fundamental as the elements in chemistry. They are important both as a tool 
for solving other problems, and as a subject of study in their own right. One 
of their enduring mysteries is to understand how they are distributed.

Here is the paradox. Primes behave very much as if they were randomly 
distributed on the number line. The distribution is not completely uniform; 
large numbers are less likely to be prime than small numbers, because there 
are more possible prime divisors. Gauss conjectured on the basis of empirical 
evidence that the “density” of prime numbers decreases in proportion to the 
natural logarithm of n, written ln(n). This means that a ten-digit number is 
half as likely to be prime as a five-digit number, and five times less likely to 

Above A diagram 
showing a method for 
identifying prime numbers, 
described by the ancient 
Greek mathematician 
Eratosthenes (276 bc– 
194 bc).
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be prime than a two-digit number. We can think of 1/ln(n) as the “probability” 
that n is prime. And yet this statement is absolutely paradoxical, because 
there is no probability involved! Either a number is prime or it is not.

Nevertheless, Gauss’s conjecture, called the Prime Number Theorem after 
it was finally proved in 1898, provides remarkably accurate estimates of the 
distribution of primes. For example, the density formula says that the number 
of primes less than 1 million should be about 78,628. In reality, the number 
of primes is 78,498—an error of less than 0.2 percent. If we go up to 1 billion, 
the predicted number is 50,849,235. The exact number is 50,847,534—so 
the estimate is off by less than 0.004 percent! I hope that you are as amazed 
by this fact as I am. Think of how difficult it is to determine whether even 
one large number is prime. Even with current computer technology, no one 
can tell whether a randomly chosen 200-digit number is prime. And yet, 
using the Prime Number Theorem, we can find a very accurate (though not 
perfectly accurate) count of all the primes less than that number! 

T H E  S T O R Y  O F  �the Prime Number Theorem is a little reminiscent of 
Fermat’s Last Theorem. At some unknown date, Gauss wrote the cryptic 
comment, “Prime numbers less than a ≈ a/ln a,” which is roughly a statement 
of the Prime Number Theorem. There is no indication of a proof, and he 
probably based his assertion on numerical evidence. Around 1850, the 
Russian mathematician Pafnuty Chebyshev proved that the error in the 
above approximation, for large enough numbers n, is never greater than 
11 percent. Of course, the examples above intimate that the error is in fact 
considerably smaller. Chebyshev’s work was a big step in the right direction, 
in part because he used the zeta function as a tool for counting the number 
of primes.

In 1859, Bernhard Riemann took another amazing step forward, which 
explains why the zeta function (discussed in Chapter 12) is now named after 
him rather than Chebyshev. He discovered an exact formula for the number 
of primes less than n. However, there is a catch. To compute the number 
exactly, you need to know the infinitely many places in the plane where the 
Riemann zeta function takes the value zero. (These places are called the 
“zeros” of the zeta function, as shown below). If you know approximately 
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where the zeros are, Riemann’s formula tells you approximately how many 
primes there are.

In 1898, Jacques Hadamard and Charles de la Vallée Poussin, working 
separately, both proved that all the zeros lie in an infinite strip, to the right 
of the line x = 0 and to the left of the line x = 1. Even this rough information 
on the location of the zeros was good enough to prove the Prime Number 
Theorem, one of the landmark theorems of the nineteenth century. 
Fortunately for Hadamard and de la Vallée Poussin, Gauss was no longer 
alive to say, “I knew that 100 years ago!”

The story of the theorem is not quite over, though. The more accurately 
you can pin down the location of Riemann’s zeros, the more you know about 
prime numbers. Hadamard and de la Vallée Poussin showed the zeros lie  
on an infinitely long and straight “street” in the plane (the shaded strip in  
the figure below). Riemann had conjectured, but could not prove, a much 
more precise statement: All of the zeros lie exactly in the middle of this 
street! If this statement, called the “Riemann Hypothesis,” is true, it would 
provide the finest control over the 
distribution of primes. 

Now that Fermat’s Last Theorem has 
been proved, the Riemann Hypothesis 
is at the top of number theorists’ 
“most wanted list.” In 2000, the Clay 
Mathematics Foundation named it one of 
seven “millennium problems,” and offered 

Right The zeros of the zeta function.

(trivial zeros s = -2, -4, -6...)

(non-trivial zeros)

“critical  
 strip”

“critical  
line”

Polé s=1   Re

-5   -4   -3    -2    -1  0      1    2

1/2 +(37.58...)í
1/2 +(32.93...)í
1/2 +(30.42...)í

1/2 +(25.01...)í
1/2 +(21.02...)í

1/2 +(14.13...)í

1m

1/2 -(14.13...)í

1/2 -(21.02...)í
1/2 -(25.01...)í

1/2 -(30.42...)í
1/2 -(32.93...)í

30í

20í

10í  

-10í

-20í

-30í  



133

 

E Q U A T I O N S  I N  A  P R O M E T H E A N  A G E

a reward of a million dollars for its 
solution. Because it is so technical, 
there are few elementary examples 
of problems that the Riemann 
Hypothesis would solve. However, 
here is one example.

Back when I was in second 
grade, I noticed that the decimal 
expansions of certain fractions take 
a long time to repeat, while others 
do not. For example, 1/3 = 0.3333… 
is a quick repeater, as is 1/37 = 
0.027027… On the other hand, 1/7 
= 0.1428571428… is a slow repeater, 
cycling through six digits before it 
starts over. An even slower repeater is 1/19 = 0.0526 …, which goes a full 18 
digits before starting over with …0526… 

In fact, the decimal expansion of any number 1/n will eventually settle into 
a repeating cycle of no more than (n – 1) digits. The numbers that take the 
full (n – 1) digits are always prime, like 7 and 19. However, not all primes 
are slow repeaters. For example, 1/37 starts repeating long before the 36th 
digit—it takes only three digits! There is no known formula to determine 

which prime numbers are fast repeaters or slow repeaters. 
However, if the Riemann Hypothesis is true, then about 
37.4 percent of all primes are slow repeaters. This is 
typical of the amazingly precise information about primes 
that number theorists can squeeze out of the Riemann 

Hypothesis. (This result was proved by Christopher Hooley in 1967.)
How good is the evidence for the Riemann Hypothesis? To date, ten 

trillion zeros of the zeta function have been found, and they all lie exactly in 
the middle of the “critical strip,” just as Riemann predicted. Any reasonable 
scientist, in any other subject, would have declared the problem solved long 
ago. However, in such matters mathematicians are not reasonable.

Above Carl Frederich 
Gauss (1777–1855).

“critical  
 strip”
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the idea of spectra 
fourier series

So far, the stories I have told in this chapter have not portrayed French 
mathematics in a very positive light. First the French Academy of Sciences 
lost Abel’s memoir on elliptic functions, and then it spurned Galois’ 
revolutionary discovery of group theory. Some of the most unexpected 
breakthroughs in the first half of the 1800s came from mathematicians 
elsewhere—Hamilton in Ireland, Abel in Norway, Bolyai in Hungary, 
Lobachevsky in Russia, and of course Gauss in Germany. Nevertheless, the 
center of mathematics at this time was undoubtedly in Paris. Any student of 
mathematics today will inevitably encounter a whole suite of French names 
from this period, including Lagrange, Laplace, Legendre, Cauchy, Liouville, 
Poisson, Fourier.

It is remarkable that French mathematics remained so strong throughout 
a period of huge political upheaval. It weathered the French Revolution, 
the Terror, then Napoleon’s rise, his exile and return, the restoration of the 
monarchy, the abdication of King Charles and ascension of King Louis-
Philippe, and finally the Second Republic and Second Empire. All of these 
swings of political fortune had repercussions for individual mathematicians, 
whose fortunes rose and fell with their leaders of choice. Nevertheless, 
French mathematical culture as a whole prospered. Perhaps one reason 
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was France’s increased social mobility, which gave access to education and 
professional opportunities to anyone with talent and a little bit of luck.

A  P E R F E C T  E X A M P L E  would be Joseph Fourier, a tailor’s son who 
was born in 1768 and orphaned at age nine. Brought up in a convent and 
educated in a military school, he supported the Revolution and managed 
not to be executed during the Terror, although he was arrested twice. He 
rose through France’s top educational institutions, the École Normale where 
he was a student, and the École Polytechnique where he became a junior 
professor.

In 1798, Napoleon Bonaparte launched a military campaign in Egypt, 
with the idea of making it into a French colony. In addition to his invasion 
force of 40,000 soldiers, Napoleon brought 167 scientists to study Egypt and 
catalog Egyptian culture.† Among the “savants” who came along was Fourier. 

†.	In spite of his other failings, Napoleon was an admirer and supporter of science. He even has a 
minor theorem in Euclidean geometry, Napoleon’s theorem, named after him. It is unclear whether 
Napoleon actually proved it.

For any function f(x), “f-hat” is its Fourier series. It decomposes f into 
a spectrum of sine and cosine waves of different frequencies. The 
second formula tells how to reconstruct the original function f from its 
spectrum. In a sense, it says that “f-hat-hat” equals f again.
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This was apparently the first time Fourier met Napoleon, 
and the association would change his life. The military 
campaign was a disaster—the British navy destroyed the 
French fleet after Napoleon reached Egypt, stranding 
his massive army—but Fourier evidently made a good 
impression on the future emperor. After Fourier returned 
to France in 1801, Napoleon appointed him prefect of Isère, a province on 
the Italian border. Fourier was not entirely happy about this, as he would 
have preferred to stay in Paris at the École Polytechnique, but he proved to 
be a capable public servant. Napoleon’s defeat at Waterloo in 1815 ended 
Fourier’s political career, but it actually helped his scientific career. He moved 
back to Paris, where he became the secretary of the Academy of Sciences in 
1822 and died in 1830.

Like Abel and Galois after him, Fourier struggled to obtain recognition 
for his most important work, but for a different set of reasons. Beginning 

Above The heat equation 
has numerous practical 
uses, including weather 
forecasting.
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in 1802, he began to conduct experiments on the diffusion of heat in solid 
materials. He began with very simple cases—first a solid bar, then a ring—
which could be treated as one-dimensional problems. At the same time, he 
developed a two-part mathematical theory of these objects, first setting up 
an equation (known as the heat equation) that expresses the conduction of 
heat inside the bar, and then solving it by a method that became known as 
Fourier series. 

T H E  H E A T  E Q U A T I O N  is an excellent example of what mathematicians 
in the ninetheenth century did: it indicates exactly how the current 
temperature distribution affects the future temperature. Roughly, it says that 
heat will flow toward points that are cooler than the average temperature 
of their neighbors, and away from points that are warmer. Because this is a 
statement about rates of change, of course it is expressed in the language of 
calculus. Furthermore, it relates two different kinds of rates of change. The 
rate of change in temperature over time, written in the formula as du/dt is 
determined by the spatial variations in temperature, represented by d

2u/dx2, 
which reflects the difference between the temperature at the point x and the 
temperature at two equally spaced points to its left and right.  The complete 
heat equation reads as follows: 

Such an equation is called a partial differential equation: “partial” because 
each term expresses part of the way that temperature varies (either in space 
or in time); “differential” because it involves derivatives. Partial differential 
equations would turn out to be crucial for modeling all sorts of physical 
processes, from heat conduction to fluid flow to the propagation of electric 
and magnetic fields. Every time you read a weather forecast, you are seeing 
the solution of several partial differential equations that describe the motion 
of heat and air and water in the atmosphere.

Fourier’s work also illustrates the fact that mathematics, when applied to 
real-world problems, is a two-step procedure. First comes the modeling of 
the problem—translating your assumptions, or your empirical observations, 
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into mathematical language. Fourier’s modeling of heat flow is beautiful, 
convincing, and far-reaching. The three-dimensional heat equation applies 
to everything from the inside of your coffee cup to the inside of a star to 
global climate change.

The next step after modeling is to solve the equations of the model. It 
would seem that this would be the most routine part of the work—a solution 
is a solution, it is either correct or not—and yet this was exactly where 
Fourier ran into controversy.

Fourier used a time-honored method of solving the equation: he guessed. 
In particular, because the temperature u in the bar is a function of both space 
(x) and time (t), he guessed that it was simply a product of two functions, 
one of them purely a function of time and the other one purely a function 
of space. It worked; the solution was a product of a sine wave (in space) and 
a decaying exponential function (in time). If your metal bar starts with a 
temperature distribution whose graph is a sine wave, its temperature will 
gradually cool down to zero (or whatever the ambient temperature is) at a 
rate that is proportional to the square of the wavelength of the sine wave.

But what if the initial temperature distribution of your metal bar isn’t a 
sine wave? For example, in his experiments Fourier put one end of the bar 
into a furnace, creating a temperature distribution with half of the bar hot 

Above  Fourier’s solution for the heat equation involves sine waves whose amplitudes decrease over 
time, as shown here.
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and half cold. In physics lingo, this would be called a “square wave,” not a 
sine wave. But Fourier asserted that any temperature distribution could be 
written as a sum (not just a finite sum—an infinite sum, nowadays called a 
Fourier series) of sine waves.

Nowadays, with computers, we can draw beautiful pictures to illustrate 
Fourier’s idea of approximating arbitrary functions with trigonometric series. 
In particular, it is easy to see how a square wave emerges out of a chorus of 
wobbly approximations. But this precise point stuck in the throats of his 
colleagues, particularly his former teacher Joseph Louis Lagrange. It implied 
a sea change in mathematicians’ conception of what a function was. 

E V E R  S I N C E  E U L E R ,  functions had been seen as formulas: finite 
combinations of known functions such as polynomials, exponentials, 
trigonometric functions, and so forth. Or, following Newton, they had been 
expressed as power series, which are basically “infinite polynomials.” But 
Fourier series were much more versatile. They could represent functions with 
jumps and corners, which could not be expressed with simple arithmetic 
formulas. Fourier’s paper marked the beginning of a broader conception of 
a function, the input-output model that we use today. A function is simply 

Above A graph displaying the “square wave” and its approximation by finite sums of sine waves. The 
approximations can be made as close as desired to the original square wave.
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a rule that assigns to any input value 
a unique output. The input and 
output values don’t even have to be 
real numbers, and the rule certainly 
does not have to be expressible 
as a formula. In Part Two, I said 
perhaps a bit cavalierly that classical 
mathematicians were not interested 
in quantities like heartbeats and stock 
prices. It would be more accurate 
to say that it wouldn’t even have 
occurred to them to think of such 
things as mathematical functions. 
Fourier’s insight opens the door to a 
vast range of physical and empirical 
processes, especially ones with jumps 
and discontinuities.

Lagrange’s objections did have some merit, though. Fourier said that 
you could break any function down into a sum of sine waves, each with a 
different frequency n. There is a function or “f-hat” that tells you how 
“strong” each frequency is. Fourier’s key point is that you 
can reconstruct the original f from “f-hat.” According to 
Fourier’s inversion formula, “f-hat-hat” is equal to f again. 
Fourier did not provide an adequate proof of this. In fact, 
it is not even true for functions with discontinuities. What 
kinds of functions do obey the Fourier inversion formula? The answer is 
not easy, and the problem provided a major stimulus in the nineteenth and 
twentieth centuries to the theory of functions, or “functional analysis.”

T H E  I M P O R T A N C E  O F  the Fourier series (and the “hat” concept, 
which is technically called a Fourier transform) goes far beyond the heat 
equation. Fourier transforms allow any time-varying signal to be decomposed 
into a spectrum of wavelengths. Astronomers use this principle to determine 
what molecules are in distant stars. Radios use this principle to pick out 

Above Joseph Fourier 
(1768–1830).
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a particular channel—it’s a matter of finding a particular wavelength in a 
time-varying signal. Music synthesizers use Fourier series to simulate the 
sound of a violin or a flute, or to create a new sound that has never been 
heard before. In other words, they are tweaking “f-hat” in order to produce, 
hopefully, a better-sounding “f.” Fourier series and transforms are all around 
us; we just don’t know it.

As for Fourier, he had to wait a long time to see his paper published. He 
presented it to the Institute of France in 1807, and it was rejected because 
of Lagrange’s objections. (Also, another academician named Jean-Francois 
Biot complained that Fourier should have given him more credit.) Fourier 
submitted a re-worked version for a prize in 1811 and it won, but Lagrange 
still deemed it unsuitable for publication. Finally, in 1822, with Lagrange 
dead and Fourier now installed as secretary of the Academy, his treatise 
The Analytic Theory of Heat finally appeared, and it became one of the most 
widely read mathematics books of the nineteenth century.
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a god’s-eye view of light
maxwell’s equations

While mathematics was experiencing revolutions in algebra, geometry, and 
the theory of functions, physics was undergoing its own revolution.

At the beginning of the nineteenth century, the theories of mechanics 
and gravity were in pretty good shape. Newton had explained how planets 
orbit around the Sun. Euler, Laplace, and others had explained multiple-
body interactions in the solar system, such as the precession of the equinoxes 
and the slow variations in Jupiter and Saturn’s orbits. Newton’s laws had 
explained how solid objects respond to mechanical forces, and Euler’s 
equations of hydrodynamics had done the same thing for fluids.

However, three subjects in physics remained entirely mysterious to 
the scientific community: electricity, magnetism, and the nature of light.  
As of 1800, there was not the slightest bit of evidence that any of these  
three phenomena were related to the others. Yet by 1865, that had all 
changed and physicists had arrived at a theory that unifies all three subjects. 
Magnetic fields are produced by electric currents. Electric fields are generated 
by changing magnetic fields. And light is nothing more than a traveling 
electromagnetic wave—an intricately woven tapestry of vibrating magnetic 
fields and electric fields that cross one another like the warp and the weft of 
a piece of fabric.
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In order to reach these conclusions, physicists first had to assimilate 
a number of startling experimental discoveries. Then they had to develop 
a new kind of physics, in which solid, tangible objects (like wheels, bars, 
pulleys, and levers—the stuff of mechanics) were replaced by intangible 
concepts such as electric and magnetic fields. Because common sense and 
everyday experience no longer apply to these intangible but real phenomena, 
physicists were forced to embrace mathematics in a deeper way than they 
ever had before. It was the only guide that worked when intuition and our 
senses failed.

T H E  N A T U R E  O F  L I G H T  had been debated as early as the 1600s, 
when Isaac Newton argued that it consisted of tiny corpuscles, while Robert 
Hooke insisted that it was made of waves. Newton’s enormous prestige 
pushed the wave theory into the background for a hundred years or so. But 
in the early 1800s, several experimental discoveries revived the debate. In 
1801, Thomas Young discovered the interference of light waves. When a 
beam of light passes through two narrow, parallel slits, what we see on the 
other side is not two narrow bright bands, but a series of alternating dark 

E and B represent the electric and magnetic fields in a vacuum, with no 
electric charges or currents present.  The constant c is the speed of light. The 
symbol “∇” (the divergence) represents the tendency for field lines to move 
apart. The symbol “∇ ×” (the curl) represents the tendency of the field lines to 
rotate. Collectively, the equations say that in the absence of electric charges, 
neither the electric field nor the magnetic field has any sources or sinks. 
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and light bands with the brightest 
one right in the middle. This is 
easy to explain if you think of light 
as being like ripples of water in a 
tank, but not if you think about it 
as tiny particles of grapeshot.

Also, as early as 1665, Francesco 
Grimaldi had observed an 
effect he called diffraction—the 
apparent bending of light around 

a corner. Again, this was hard to square with Newton’s laws. (Remember 
that particles in motion with no force acting on them are supposed to go 
in a straight line.) Refraction, the bending of light as it passes through a 
prism, was also easier to explain with the wave theory than the particle 
theory. In 1818, Augustin Fresnel successfully accounted for all three of 
these phenomena—interference, diffraction, and refraction—with a theory 
in which light consists of transverse waves.‡

By the 1820s in France, and the 1830s in England (which was slower 
to shake off its hero-worship of Newton), the wave theory had gained the 
upper hand. But if light was a wave, what was the wave made of ? It could 
not be a wave of air or any other fluid, because transverse waves don’t travel 
through fluids; they require a medium with elasticity, or the ability to “snap 
back” after being stretched. The great majority of physicists assumed that 
light traveled through some sort of “luminiferous aether,” but all efforts to 
detect this aether directly were in vain.

Meanwhile, the mysteries of electricity and magnetism were also 
deepening. In 1799, Count Alessandro Volta of Italy had invented the 
battery, which for the first time made it possible for physicists to experiment 

‡	 A transverse wave is one that propagates at right angles to the motion of the individual particles in 
the wave. An example is “the wave” (sometimes called “the Mexican wave”) at a sports stadium. The 
individual particles (i.e., the fans) go up and down, but the wave moves around the stadium.

Left Young’s Double Slit experiment.
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with steady electric currents. In 1820, Hans Christian Ørsted noticed, while 
preparing for a lecture, that when he turned on an electric current in a wire, 

it deflected a nearby compass needle. This was the first 
indication that electricity and magnetism were related. 
This clue was followed in 1831 by Michael Faraday’s 
discovery of electromagnetic induction. Faraday showed 
that a changing electric current in one coil would induce 
a temporary electric current in another one. Likewise, 
moving a magnet close to a coil would temporarily induce 
a current. This was, then, a reciprocal effect to the one 

Ørsted had noticed. Magnetism could induce electricity, but only if the 
strength of the magnetism was changing.

T H E  M A N  W H O  W O V E  all of these confusing clues into a beautiful 
theory was James Clerk Maxwell, a Scottish physicist. For those who think 
that great discoveries are always made in a flash of inspiration—like William 
Rowan Hamilton’s discovery of quaternions—Maxwell provides compelling 
evidence to the contrary. He worked on electromagnetism for several years, 
gradually painting the beautiful canvas we now know as Maxwell’s equations.

Above A coherent beam 
from a red Helium-Neon 
laser (632.8 nm) is used  
to illuminate two closely-
spaced 25-micron-wide 
slits (double-slits).
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Maxwell’s first step, in 1855, was to take seriously Faraday’s description 
of the “lines of force” created by a magnet—lines that are easily seen if  
you sprinkle iron filings nearby. Faraday believed that the space around  
the magnet was surrounded by these “lines of force” even when no iron  
filings were present. Maxwell gave this invisible collection of curves a 
name—the magnetic field. He also postulated an electric field that conveys 
electric forces.

In the twenty-first century, we are completely accustomed to the idea that 
we live surrounded by electric and magnetic fields. So it may take a conscious 
effort to imagine how radical the idea was in the 1850s. What is an electric 
field? You can’t see it. You can’t touch it. How can you tell that it’s there? 

An additional roadblock to Maxwell’s theory of fields was, again, the legacy 
of Newton. In Newton’s theory of gravity, planets attract each other from a 
distance, with a force proportional to the inverse square of their distance. For 
a while, electricity and magnetism seemed to work in exactly the same way. 
Physicists subscribed to the idea of “action-at-a-distance” as an article of 

faith. But Faraday and Maxwell questioned this conviction. 
They said the force between two charges, or two magnets, 
results from the field between them. In Newton’s universe, 
empty space is empty. But in Maxwell’s universe, it is 
humming with electric and magnetic potential.

Six years after his first paper, Maxwell added another 
stroke to his scientific painting. He envisioned electricity 

as an elastic force in the medium that electric and magnetic fields inhabit. 
It’s interesting to note that he had not yet abandoned the mechanical way 
of thinking and accepted the greater flexibility of mathematics. His second 
paper relies on an extremely complicated model, replete with spinning 
vortices to represent the magnetic fields and counterrotating “idle wheels” 
to represent the electric fields. All of this baroque machinery would be 
discarded in his third paper.

Elastic forces, as noted above, are exactly what is necessary to transmit 
transverse waves. Not only that, there is a simple formula for the speed of 
waves in any elastic medium. Reasoning by analogy, Maxwell was led to 
a formula for the speed of an electromagnetic wave. At the time, he was 
spending the summer at his estate in Scotland, and he could not look up the 

Opposite Iron shavings 
are used to reveal 
magnetic field lines 
produced by two  
bar magnets.
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necessary physical constants to plug into the equation. But when he got back 
to his office at Kings College in London in the fall of 1861, he computed 
the speed as 310,740,000 meters per second. By comparison, in 1849, a 
French physicist named Armand Fizeau had measured the speed of light at 
314,850,000 meters per second! (The currently accepted value is 299,792,458 
meters per second. In fact, since 1983 the meter has been defined as the 
distance light travels in 1/299,792,458 of a second, so the speed of light is now 
prescribed by definition and is no longer an experimental constant.) It could 
not be an accident, thought Maxwell, that the two constants were so close. 
In his paper announcing the result, he wrote in italics: “We can scarcely avoid 
the inference that light consists in the transverse undulations of the same medium 
which is the cause of electrical and magnetic phenomena.” 

B U T  M A X W E L L  was �not done. Having used a mechanical analogy to 
discover that electromagnetic waves and light waves are the same thing, he 
realized that he could forget about the vortices and the counterrotating gears, 
and derive the result solely from mathematics. What was left, by the time he 
wrote his third paper in 1865, was a simple set of four partial differential 
equations that relates the electric field (E) to the magnetic field (B) at any 
point in a vacuum.

By themselves, these equations are not a complete theory of 
electromagnetism. In particular, they lack any information on how material 
particles, such as electric charges and magnets, respond to the fields E and 
B. To use a Judeo-Christian analogy, Maxwell’s equations represent the state 
of the universe after God said “Let there be light,” and before he created 
anything else. To incorporate the material world, Maxwell added extra terms 
(representing charge density and current density) and extra equations.

Most of Maxwell’s equations were not actually original to him. The 
individual equations are known as Gauss’s law, Faraday’s law, and Ampère’s 
law. Maxwell’s only new contribution was a correction term that enters 
Ampère’s law when electric currents are taken into account. Nevertheless, the 
understanding that the equations could be brought together into a system, 
and the idea that magnetic and electric fields were the fundamental agent, 
were entirely due to Maxwell. So, too, was the discovery that the speed of 
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light, c—the only experimental constant to be found in these equations—is 
a fundamental physical law.

Earlier it was mentioned that Euler’s equation eiπ + 1 = 0 was voted the 
most beautiful equation of all time by readers of Mathematical Intelligencer. 
In 2004, Physics World conducted a similar poll. It is no surprise that the 
readers of that publication chose Maxwell’s equations as the greatest ever. 
They are so simple, so symmetric, so hard-earned, and they explain so much.

Yet like the other revolutions described in this chapter, they made little 
impression at the time. Maxwell’s contemporaries just didn’t know what 
to make of them. “As long as I cannot make a mechanical model all the 
way through I cannot understand; and that is why I cannot get the 
electromagnetic theory,” said William Thomson, Lord Kelvin, in 1884 (the 
same Lord Kelvin who couldn’t “get” quaternions!).

But over time, the significance of Maxwell’s equations became more 
apparent. They predicted that electromagnetic waves could exist with 
different wavelengths—such as the waves we now call microwaves, infrared, 
ultraviolet, and X-rays. They predicted that such waves could be created by 
oscillating electric fields. In 1901, Guglielmo Marconi used precisely this 
principle to transmit the first radio waves. They implied that light itself can 
exert pressure. Sure enough, researchers in the twentieth century discovered 
the “solar wind,” which explained the centuries-old mystery of why comet 
tails point away from the Sun. And in 1905, as will be discussed further in 
the next chapter, they led Albert Einstein to the theory of relativity.





P a r t  f o u r 

equat ions in  
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No� scientist is more
emblematic of the twentieth century than Albert Einstein. One part imp 

and one part prophet, he sticks out his tongue at us in one famous 

photograph, and looks at us with world-weary eyes in another. His 

unruly hair and lack of concern for social conventions have come to 

define the popular image of science. He was the world’s first scientist-

as-rock-star.

In some ways science could not have asked for a better ambassador 

to the public. Einstein’s fame was truly deserved. Not just once, but 

over and over again, he transformed the worldview of physicists. He 

was the first physicist to understand the quantization of light; he was 

the first to recognize the equivalence of matter and energy; his name 

is synonymous with the theory of relativity. Yet he also transcended 

science. He used his fame to advance the cause of pacifism, at least 

until the rise of Nazi Germany made that position untenable for him. 

In 1940, he warned President Franklin Roosevelt about the threat 

posed by a possible atomic bomb, a warning that paved the way for the 

Manhattan Project and profoundly affected the balance of power in the 

postwar world.

Einstein’s discoveries were just as much a result of his personality 

and the time in which he lived as of his intellect. By nature he loved 

to question authority. While other physicists were hesitant to discard 
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centuries of tradition, Einstein was completely unconcerned and even 

happy to do so. He was lucky to come of age at a time when physicists 

had three mature, thoroughly understood theories—mechanics, 

electromagnetism, and thermodynamics—that fundamentally 

contradicted each other in subtle ways. While others averted their eyes 

from the contradictions, Einstein dared to look straight at them and 

pointed out how to overcome them.

Curiously, Einstein was not a lover of mathematics early in his career. 

His former math teacher Hermann Minkowski once wrote, “In his 

student days Einstein had been a lazy dog. He never bothered about 

mathematics at all.” But Einstein’s attitude completely changed over 

time. Minkowski’s mathematical reformulation of special relativity, 

in 1908, helped his theory win acceptance. Einstein could never even 

have written down his theory of general relativity without a deep 

understanding of non-Euclidean geometry. By 1912, Einstein had 

recanted his former disdain: “I have gained enormous respect for 

mathematics, whose more subtle parts I considered until now, in my 

ignorance, to be pure luxury!”

Sometimes converts make the best missionaries. Even if Einstein was 

a reluctant mathematician, he certainly enhanced the prestige of the 

subject. Thus it makes sense to start our history of the equations of the 

twentieth century with him.
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the photoelectric effect
quanta and relativity

The greatest revolution in twentieth-century physics began with a seemingly 
insignificant observation. In 1887, the German physicist Heinrich Hertz 
noticed that he could get a spark to jump between two metal electrodes 
more easily when the electrodes were exposed to light (specifically ultraviolet 
light) than he could if they were in the dark. 

Another German physicist, Philipp Lenard, showed in 1902 that shining a 
light on a metal caused the metal to emit what were then known as “cathode 
rays,” and are now known as electrons. If the electrons had sufficient energy, 
they could produce the sparks that Hertz had seen. The phenomenon 
became known as the photoelectric effect: the production of electricity from 
light. By varying the intensity and frequency (i.e., the color) of the light, 
Lenard discovered some strange things about the photoelectric effect. It does 
not occur at all with red light, no matter how intense the light is. Also, the 
energy of the emitted electrons does not increase when the intensity of the 
light increases—only when the frequency increases.

In 1905, Albert Einstein, who was at that time a 26-year-old patent clerk 
in Bern, Switzerland, proposed a revolutionary explanation for Lenard’s 
discovery. He hypothesized that light “behaves like a discontinuous medium 
consisting of energy quanta.” His “energy quanta” are now called photons. 
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Einstein argued that each photon contains a characteristic amount of energy, 
which is proportional to the frequency, n, of the light: E = hn.

The quantization of light means that the absorption of a photon is an all-
or-nothing deal. When a photon hits the surface of the metal, it cannot be 
half absorbed and half reflected (as an ordinary wave can). If it is absorbed, 
all of its energy goes into the target. If that energy exceeds the binding 
energy (P) that holds electrons to the metal surface, then the metal will emit 
an electron with a characteristic energy hn – P.

Einstein’s light-quanta hypothesis explains why red light fails to induce 
a photoelectric effect. Red light has a longer wavelength, and a lower 
frequency, then green or blue light. Because their frequency n is smaller, the 
photons in red light do not have enough energy to kick out an electron. (In 
other words, hn < P.) If you make the light more intense while keeping the 
color the same, the number of photons will increase, but none of them are 
energetic enough to produce the photoelectric effect.

The strange behavior of photons has real consequences. For example, in 
recent years, there has been controversy over an alleged link between mobile 
phone usage and cancer. Holding a cell phone next to your head increases 
the intensity of the radiation that you are exposed to. Therefore, it seems like 

E represents the energy of an object; m its mass 
at rest; and c = 299,792,458 meters per second is 
the speed of light. Einstein’s equation implies that 
matter is a form of energy.
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common sense that this will increase the risk of radiation-induced damage 
to your cells. However, this is completely wrong. If the general public 
understood Einstein’s century-old discovery of the quantization of light, the 
mobile-phone health scare would never have gotten started.

Radiation damages biological tissues by knocking electrons loose from 
atoms, making the atoms more reactive. Just as in the photoelectric effect, it 
is the frequency of the radiation that matters, not the intensity. The infrared 
radiation emitted by a cell phone has even lower frequency than red light, so it 
is below the threshold where it can knock an electron loose from a metal atom. 
Moreover, our bodies are not made of metal! The atoms in 
our bodies hold their electrons more tightly than metals do. 
For both of these reasons, infrared light is completely safe 
to us; it cannot ionize the atoms in our body. Red, green 
,and blue light are also perfectly safe. Otherwise we would 
have to live in caves, and avoid exposing ourselves to green 
grass and a blue sky. 

We need to start worrying about cancer only when we are exposed to 
higher frequencies of radiation, such as ultraviolet light or X-rays. If the 
frequency is high enough to ionize the atoms in your body, then the intensity 
will start to matter—but not until then.

F O R  T H E  P H Y S I C I S T S  of Einstein’s day, the light-quanta hypothesis 
flew in the face not only of common sense, but also of a century of theory. 
The debate over whether light was a particle or a wave had been going on 
since the early 1800s, and had apparently been resolved in favor of waves. 
Maxwell’s equations proved that light is an electromagnetic wave.

Now Einstein was reopening a question that had seemed to be settled for 
good. Older physicists did not take kindly to it. In 1913, Max Planck wrote, 
“[Einstein] might sometimes have overshot the target in his speculations, as 
for example in his light quantum hypothesis.” In 1916, Robert Millikan wrote 
that the hypothesis “may well be called reckless.” Nevertheless, Millikan’s own 
experiments showed that Einstein was correct, and six years later Einstein 
won the Nobel Prize for his explanation of the photoelectric effect.

In fact, Einstein’s equation  explained much more than one 

Opposite Atomic burst 
over Hiroshima, from the 
first atomic bomb used in 
military action, nicknamed 
“Little Boy.”
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minor experimental effect. It was the first shot in the quantum revolution. 
Quantum mechanics resolved the age-old “particle versus wave” debate in an 
utterly paradoxical fashion. Light is both a particle and a wave. Which one it 
“looks like” depends on how you interrogate it. If you measure its frequency 
and wavelength, light looks like a wave. If you count photons by using the 
photoelectric effect, then light looks like a particle.

Any attempt to describe this wave-particle duality in common language 
tends to fall flat, because there is nothing like it in our experience of the 
macroscopic world. Intuition and common sense often mislead us, as the 
cell-phone example shows. In the subatomic world, mathematics is the only 
reliable guide. 

If Einstein had been any ordinary scientist, or even any ordinary Nobel 
laureate, his equation E = hn would have been the achievement of a lifetime. 
Instead, it is not even his most famous equation beginning with the letter E! 
That distinction, of course, falls to another equation that he first set down on 
paper in 1905:

This equation expresses, with elegant simplicity, the equivalence between 
matter and energy. A particle of mass m contains an amount of energy E that 
is equal to the product of the mass and the square of the speed of light (c2). 
Because the speed of light is a gigantic number, even a tiny amount of matter 
can be converted to vast amounts of energy. The bombing of Hiroshima in 
1945 proved this only too well. The “Little Boy” bomb contained about 140 
lb (64 kg) of enriched uranium. The amount of matter actually transformed 
into energy in the explosion was a little more than the weight of one BB 
pellet. One BB pellet was enough to destroy an entire modern city.

When Einstein discovered the equivalence of energy and mass, in 1905, 
he did not yet foresee its terrible consequences. He wrote to a friend: “The 
principle of relativity in relation to Maxwell’s equations demands that mass 
is a direct measurement of the energy of a body; that light carries mass. 
A noticeable decrease in mass must then occur in the case of radium. The 
thought is funny and infectious; but whether God is laughing and has led 
me by the nose, I do not know.” Forty years later, the whole world found out 
that God was not laughing.
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How did Einstein arrive at his most famous equation? It goes back to his 
second great discovery of 1905: the theory of special relativity.

N E W T O N ’ S  L A W S  �O F  M O T I O N  hold true in any inertial frame of 
reference—that is, one moving at a constant velocity. If you are traveling in 
a train at a constant speed of 100 meters per second, it feels just the same 
to you as if the train were standing still and the surrounding landscape were 
rushing by you at 100 meters per second. No physical experiment can tell you 
the difference. On the train, bodies moving in a straight line will continue 
to move in a straight line (Newton’s first law). On the train, an applied force 
will produce an acceleration according to the equation F = ma (Newton’s 
second law). On the other hand, if the train suddenly slows down or speeds 
up, so that its velocity is not constant, you can detect this fact. 

However, Maxwell’s equations for electromagnetism do not seem to behave 
the same way. Recall that the speed of light appears in Maxwell’s equations as 
a physical constant. Therefore, if the relativity principle applies to Maxwell’s 
equations, any measurement of the speed of light in any inertial reference 
frame should give the same result—299,792,458 meters per second. 

But that fact leads to a paradox. If a car is traveling at 120 meters per second, 
and you follow it on a train traveling at 100 meters per second, then it should 
seem to you as if the car is going much slower—only 20 meters per second. 
Likewise, if you are chasing a light wave, it should appear to move 100 meters 
per second slower than its normal speed (that is, 299,792,358 meters per 
second). Or if you are approaching a light wave head on, it should appear to be 
moving 100 meters per second faster than usual.

In fact, we do, sort of, live on a moving train—we call it Earth. Because 
our orbit around the Sun takes us in different directions at different times 
of year, physicists reasoned that the velocity of light coming from a distant 
star should appear to change, depending on whether we are moving toward 
or away from it. Yet many experiments, including a famous one by Albert 
Michelson and Edward Morley in 1887, failed to discover any such changes. 
Einstein learned about these experiments while he was a student.

Einstein argued that the experiments had failed because there is nothing 
to detect. He elevated the relativity principle to the status of a postulate: the 
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laws of physics are the same in all inertial reference frames. In particular, this 
means that speed of light is a universal constant. We do not have to abandon 
Maxwell’s equations; nor do we have to abandon Newton’s 
laws. We do, however, have to modify them. The common-
sense subtraction of velocities, given in the example above, 
is incorrect and has to be replaced by a somewhat more 
elaborate formula. More importantly, we have to abandon 
our common-sense conceptions of space and time. According to Einstein, 
the reason we do not detect any change in the speed of light is that lengths 
and time intervals are relative. They depend on your frame of reference.

Imagine you are on a train speeding past a stationary Albert at 100 meters 
per second. As your train goes whizzing by, Albert (if he is very observant) 
will notice that it has gotten a little bit shorter than it was when it was 
standing still, and he will also notice that the watch on your wrist is running 

a little bit slower. If you synchronize 
your watches so that they both read 
10:00 the instant that you pass him 
in your train car, he will see his watch 
reach 10:01 before yours, because of 
the time dilation effect. But you will 
insist that your watch reached 10:01 
first! And you are both right. By the 
time that the light waves from his 
digital watch reach you, showing 
the readout 10:01, your watch will 
already show 10:01, and vice versa. 
In Einstein’s universe, there is no 
absolute measurement of time, and 
in fact there is no absolute concept of 
“before” and “after.” 

The only reason we do not normally 
perceive the shrinking of space 
or the dilation of time is that we 
normally move at very slow speeds 
compared with light. Thus the effects 

Below Albert Einstein, 
(1879–1955). 
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are extremely small. However, with precision instrumentation it is possible 
to test the predictions of relativity theory. A clock launched into orbit and 
then brought back to Earth really does run a few nanoseconds slow. Global 
positioning satellites take relativistic effects into account. Your GPS receiver 
compares time signals received from several different satellites, in order 
to determine how far away you are from them. Each of those satellites is 
moving rapidly with respect to you, so their clocks will be slowed down by 
the time dilation effect. Thanks to GPS, we are now living in the era of 
applied relativity.

E I N S T E I N  F O R M U L A T E D  two different theories of relativity, as 
mentioned earlier. In “special relativity,” which he developed in 1905, 
he assumed that the laws of physics are the same when viewed from any 
inertial reference frame (i.e., one moving at constant velocity). However, it 
continued to bother Einstein that accelerated reference frames (which move 
at non-constant velocities) were somehow different. For several years, he 
sought a truly general theory of relativity in which the laws of physics would 
be expressed in the same way regardless of the observer’s frame of reference. 

His key insight was that acceleration is indistinguishable from gravity. We 
can see this clearly in the case of astronauts orbiting Earth. We typically 
talk about them being in “zero-gee” (no gravity), when in fact they are still 
very much within Earth’s gravitational field. They do not perceive the force 
of gravity because they are in free fall, along with their entire spacecraft. 
According to Einstein’s theory of “general relativity,” there is no observable 
difference between free fall in a gravitational field and constant-velocity 
motion in a part of space with no gravitational field.

Mathematically, general relativity is quite a bit more difficult than special 
relativity. You can get a general idea of this by looking at Einstein’s field 
equations, which replace Newton’s law of gravitation:

The indices m and n refer to the four coordinates of spacetime, and each  
pair of indices (00, 01, 02, 03, 11, 12, 13, 22, 23, and 33) corresponds  
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to a different equation. Thus the line above actually comprises ten  
separate equations. 

The left side of Einstein’s field equations measures the curvature of space, 
and the right side, the “stress-energy tensor,” represents the propagation of 
matter and energy (which are equivalent!). John Wheeler, a leading relativity 
theorist, expressed the meaning of this equation succinctly: “Matter tells 
spacetime how to curve, and curved space tells matter how to move.” The 
above equation led to the discovery of black holes and to the Big Bang 
theory, and on a more mundane level it provides additional correction terms 
to GPS satellites. In fact, the general relativity corrections to GPS are larger 
than the special relativity corrections.

It was also the general theory of relativity that led to Einstein’s prediction 
of the curving of light rays in a gravitational field. For 
example, the light from distant stars bends as it passes 
by the Sun. When this prediction was confirmed by 
measurements taken during the solar eclipse of 1919, 
Einstein rocketed to sudden celebrity. 

But now let’s answer �the question posed earlier: How 
did Einstein realize that matter and energy are equivalent? 
By 1915, when he wrote down the equations of general 
relativity, the equivalence was second nature to him. But in 

Above A page from 
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1905, when he was still just a patent clerk, general relativity was not even a 
gleam in his eye yet. All he had to work with was special relativity.

E I N S T E I N  D I S C O V E R E D  H I S  M O S T  famous equation by pursuing 
a seemingly innocuous observation to its logical conclusion. He asked what 
would happen if a body emitted two photons in opposite directions, and if 
it was viewed in two different inertial frames: one at rest with the body, the 
other moving at velocity v, perpendicular to the photons. He showed that 
the photons would be blue-shifted (have higher frequency) in the moving 
coordinates. Thus, because of his first equation E = hn, they must also have 
higher energy. Einstein argued that the energy could only have come from 
the kinetic energy of the body that emitted them. The Newtonian formula 
for the kinetic energy is 1/2 mv2, half the mass times the velocity squared. 
But the velocity of the object in the moving coordinate frame could not have 
changed when it emitted the photons, because their momenta cancel each 
other. Therefore the mass must have changed! The body has converted mass 
to energy, and the amount of mass converted can be computed: 

The most famous equation in history follows as a consequence.
Einstein’s paper, “Does the Inertia of a Body Depend Upon Its Energy 

Content?” is both beautiful and horrifying to a mathematical purist. It is only 
three pages long. It is wonderful to see how the strands of Einstein’s thought 
weave together, combining the light-quanta hypothesis with special relativity 
like two instruments in a duet. But the “lazy dog” of a composer, the enfant 
terrible who did not care about his mathematics courses, is still very much 
in evidence. Einstein does not actually prove that ! He makes an 
approximation at one point, and therefore he proves only that  
(that is, energy is approximately equivalent to matter). He makes no real 
attempt to determine how accurate the approximation is. It’s as if he couldn’t 
be bothered. Why spoil a “funny and infectious” thought with a pedantic 
mathematical proof? Later, of course, Einstein and others would go back and 
provide more rigorous arguments for this most important physical principle.
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from a bad cigar to  
westminster abbey
dirac’s formula

By 1922, Albert Einstein was an international celebrity, mostly because of 
his theory of general relativity. Meanwhile, the quantum revolution that 
he had begun was continuing to progress apace, mostly without Einstein’s 
participation. The world of physics was in turmoil, with just as many skeptics 
as believers in the new quantum physics. Even the believers were not sure 
just how much to trust their new theories. 

What is quantum physics, and what is it that makes it so revolutionary? 
At its most basic level, it simply asserts that the measurements that 
physicists make, such as energy, electric charge, and angular momentum, are  
quantized. They are not infinitely divisible; there is a smallest unit of energy, 
of charge, etc.

Taken by itself, that statement may seem interesting but hardly 
revolutionary. The revolutionary implications become apparent when you 
start prying into the details. Individual quanta do not behave like anything 
else we are used to in the macroscopic world. For example, Einstein showed 
that a photon is both a particle and a wave. How is that possible? Our 
intuition, adapted to a universe where particles are particles and waves  
are waves, is helpless to explain it. At that point, mathematics becomes  
our only guide. 
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Another prediction of quantum theory that seemed to require particles to 
perform impossible feats was the quantization of angular momentum. 

At that time, it was believed that for a particle of mass m, the quantum of 
spin is mh ⁄2π. (Here, h is Planck’s constant, which also appeared in the formula 
for the energy of a quantum of light.) If you measure the angular momentum 
of the particle about any axis, you will get a multiple of this same quantum. 
Such a phenomenon would be completely impossible in classical physics. A 
classical particle, such as a planet or a bowling ball, has a pre-existing axis 
of rotation before you measure it. That axis may be askew from the direction 
you choose to measure. If so, you will only succeed in measuring part of the 
angular momentum. 

But for a quantum particle, any observation of the angular momentum 
is an “all or nothing” proposition. Either you will see all of the angular 
momentum about the axis that you choose, or none of it. It is almost as if the 
particle waits for you to observe it, and then at that instant “decides” whether 
to spin around that axis or not. This “observer effect,” in which the observer 
seems to affect the system being observed, is ubiquitous in quantum physics; 
remember, for instance, that a photon seems to decide whether it is a particle 
or a wave based on what experiment the observer chooses to perform.

ψ denotes a wave function, which represents (for example) the state 
of an electron. E represents the electron’s energy, m its mass, and p 
its momentum. Both α and β are spin matrices or “spinors.” Dirac’s 
equation modifies Einstein’s to say that the energy of a particle 
depends on its mass, momentum, and spin.
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Two physicists in �Frankfurt, Germany, saw an excellent opportunity 
to test, and possibly refute, the quantum theory. Otto Stern and Walther 
Gerlach had developed a method for producing a beam 
of silver atoms. When a magnetic field was applied to the 
beam, according to the quantum theory, the atoms in the 
beam would be directed right or left, depending on their 
axis of rotation. If they were rotating counterclockwise 
about the axis of the magnetic field (“spin-up”) they 
would be deflected one way. If they were rotating clockwise (“spin-
down”) they would be deflected the other way. Thus the beam would split  
in two. 

However, if the world were described by classical physics, the spin 
directions of the silver atoms would be randomly oriented. Some atoms 
would be deflected a little bit in one direction, and some would be deflected 
a little bit in the opposite direction, and all would be deflected by different 
amounts. Instead of splitting into two beams, the silver atoms would fan out 
into a diffuse, wider beam. Which theory would be proven right?

Above A digital 
interpretation of quantum 
particles.
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Unfortunately, when they first looked at their collector plate, Stern and 
Gerlach did not see anything! Their beam was too weak, and the number of 
silver atoms deposited on the plate was too small to detect. 

But as Stern hunched over the plate, with Gerlach peering over his 
shoulder, they saw two dark lines magically appear where none were visible 
before. The reason, Stern later deduced, was that both he and Gerlach were 
cigar smokers. “My salary was too low to afford good cigars, so I smoked 
bad cigars,” he wrote. “These had a lot of sulfur in them, so my breath on 
the plate turned the silver into silver sulfide, which is jet black, so easily 
visible. It was like developing a photographic film.” (A re-enactment in 2003 
showed that “cigar breath” is not strong enough to produce the effect Stern 
described. However, exposing the silver directly to cigar smoke does work, 
and presumably that is what happened.)

Thus, thanks to a cigar, the quantum prediction was confirmed: the beam 
split in two. However, this was not the end of the story. With hindsight, 
physicists now know that the effect Stern and Gerlach had observed was 
not what they had been looking for. Like Columbus, who went looking for 
India but found America instead, they had had gone looking for the orbital 
angular momentum of the electrons rotating about the silver atom’s nucleus. 
What they found instead (without realizing it) was the spin of the electrons 
themselves. The discovery had repercussions no one could have expected.

S O M E  P H Y S I C I S T S  �had considered the possibility that electrons could 
spin. However, in order to achieve an angular momentum of mh/2π, the 
electron would have to spin so fast that its outer surface would be traveling 
faster than the speed of light! Of course, according to the theory of relativity 
that was not possible.

A young graduate of Cambridge University, Paul Adrien Maurice Dirac, 
set out in 1927 to reconcile the quantum mechanics of the electron with 
special relativity. He started with an equation that Einstein himself had 
written down:
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This may look somewhat familiar; it is the formula for the equivalence 
of matter and energy ( ), only it has been corrected to include the 
momentum of the electron (p). Another immediately obvious change is that 
the formula now gives the square of the energy, rather than the energy itself. 
Dirac was convinced this was a defect, and he looked for a way to take the 
square root of the equation. However, simply writing a square root in front 
was not acceptable to him. He had a highly aesthetic approach to physics, 
and many times said that the equations of physics must be beautiful. Square 
roots, to Dirac, were ugly.

Instead, Dirac wrote the formula for the electron in the following way:

where p1, p2, p3 represent the three components of the electron’s momentum 
in three-space. The mysterious quantities a1, a2, a3 and β satisfy the following 
relations:

and
 

I have displayed these formulas to make a point: they are virtually identical 
to the quaternion formulas that William Rowan Hamilton had written 80 
years earlier! Only the names have changed (and –1 has been changed to 1 in 
the first equation). Dirac had, in a sense, rediscovered quaternions, although 
he wrote them as 4-by-4 matrices.

The other change that Dirac made to Einstein’s formula was to rewrite 
the energy as an operator on a wave function, y. This is consistent with the 
philosophy of quantum mechanics: any observable quantity of a particle is 
not merely a number but an actual physical operation applied to that particle. 
(This is why the observer is such an intrinsic part of quantum mechanics.) 
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Thus, the final form of Dirac’s 
equation looks like this:

Here I have, for convenience, 
condensed the three alpha matrices 
into one symbol a, and written the 
momentum as a single vector p. 
In order for the formula to make 
mathematical sense, the wave 
function y has to be a quaternion-
like object with four components. 
This was actually the most puzzling 
aspect of the equation to physicists, 
for two reasons.

Firstly, it had four components 
instead of two. Physicists could 
make sense of two components—they would represent the spin-up and spin-
down states of an electron. But what was the meaning of the other two?

Secondly, the wave function did not behave like a vector (an “arrow” in 
spacetime). When you rotate space by 360 degrees, the wave function rotates 
by only 180 degrees, and thus the electron goes from “spin-up” to “spin-
down.”

The second point shows that electrons are not like bowling balls or 
planets. However, there is an ingenious analogy that goes by the name of 

the “Feynman plate trick” or “Dirac belt trick.” Place a 
plate in your open palm in front of you. Now rotate the 
plate 360 degrees, by rotating your arm in a circle while 
keeping your palm up. You will find your arm is in quite an 
awkward position; unlike the plate, it has not come back 
to its original state. It has rotated 180 degrees. But if you 
continue and rotate the plate one more time, your arm will 

come back to its normal, comfortable position! The whole system of “arm 
plus plate” behaves like a quaternion.  

Above Paul Dirac standing 
in front of a blackboard 
displaying a quantum 
mechanical model of the 
hydrogen molecule.
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Although Einstein’s formula E = mc2 may be better known to the public, 
Dirac’s formula may well be of greater significance both to physicists 
and mathematicians. “Of all the equations of physics, perhaps the most 
‘magical’ is the Dirac equation,” wrote Frank Wilczek of MIT in 2002, on 
the centennial anniversary of Dirac’s birth. “It is the most freely invented, 
the least conditioned by experiment, the one with the strangest and most 
startling consequences … [It] became the fulcrum on which fundamental 
physics pivoted.”

W H Y  D I D  I T  �C H A N G E  physics so much? Let’s start with those two 
extra components of the electron wave function. Dirac explained them as 
particles with negative energy, or “holes” in space. They should appear to be 
particles just like electrons, but with a positive charge. He proposed the idea 
in 1931, with great hesitancy. Other physicists ridiculed the idea. Wolfgang 
Heisenberg wrote, “The saddest chapter of modern physics is and remains 
the Dirac theory.” 

Yet within a year, Carl Anderson of Caltech had 
discovered Dirac’s positively-charged electron, or positron, 
in an experiment. It was the first time that a theoretical 
physicist had successfully predicted the existence of a 
previously unknown particle for purely mathematical 
reasons. Nowadays, theoretical physicists do this with 
gleeful abandon, and they are occasionally right. Dirac’s 
discovery utterly changed the rules of the game; the 
theoreticians no longer had to wait for experiments.

The positron was also the first antimatter particle to be discovered. 
Physicists now understand that every particle has an antimatter equivalent; 
if a particle meets its antimatter twin, the two are annihilated. Thus Dirac’s 
formula led to a new and still unsolved problem: Why do we have more 
matter in the universe than antimatter? Why isn’t the universe empty?

Dirac’s equation also revealed that our universe has two fundamentally 
different kinds of quantum particle. Some particles have spin 0, ±1, ±2, etc., 
have vector wave functions, and are known as bosons. For example, photons 
fit into this category. Others, such as electrons, have spin ±1/2, ±3/2, etc., have 
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quaternion-like (or “spinor”) wave functions,* and are known as fermions. All 
of the basic particles of ordinary matter—electrons, protons, and neutrons—
are fermions. 

Bosons like to congregate together; that is why lasers are possible. A  
laser beam is a collection of photons in the same quantum state.  
Fermions, on the other hand, stay aloof—you will never find two of them 
in the same quantum state. This is a good thing: it explains why atoms have 
electron orbitals. Because electrons can’t overlap, there is only room for two  
of them at the lowest energy level of an atom, eight at the next energy level, 
and so on. 

This pattern explains the periodic table and underlies all of chemistry. 
Imagine a universe without Dirac’s equation: it would be a universe with 
no matter as we know it, no chemical reactions, a universe with light and 
nothing else. A universe frozen at the first sentence of Genesis!

N O W  L E T ’ S  �S T E P  D O W N  from the mountaintop and look at the 
more mundane applications of Dirac’s equation. They are legion. I have 
already mentioned lasers. Also, positrons are the fundamental ingredient in 
positron emission tomography (PET scans), used to study the activity of 
the brain. Electron spins are manipulated by magnetic fields in magnetic 
resonance imaging (MRI scans), a tool used to diagnose diseases without 
exposing patients to X-rays. 

Finally, Dirac’s equation led quantum physicists to a new understanding of 
the vacuum, the ground state of the universe. They no longer see the vacuum 
as empty, but teeming with energy. Particles and their antiparticles can, and 
do, routinely pop into existence and pop right back out again. In fact, the 
whole concept of a “particle” is slightly outdated. To quantum physicists, the 

*	 Experts may object to my identification of spinors with quaternions. In fact, the difference of a 
minus sign in their definitions has an important consequence: spinors exist in all dimensions, while 
quaternions are to some extent a low-dimensional fluke. However, in three and four dimensions 
the quibble is purely academic. Three-dimensional spinors are quaternions of length one, or “unit” 
quaternions. Four-dimensional spinors are pairs of unit quaternions. 
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really fundamental concept is a quantum field. These fields, like electric fields, 
pervade all of space, and particles are their local manifestation. A particle 
is a fluctuation in the quantum field that may be just temporary or may be 
long-lasting.

Few equations in history have had more far-reaching implications. 
However, the man who discovered it, Paul Dirac, was notoriously taciturn 
and shy of publicity. If he spoke two words in a conversation, it meant that 
he was in a talkative mood. When he found out that he was going to receive 
the Nobel Prize in 1933, he initially wanted to decline it, until his friends 
persuaded him that declining the award would cause him to receive more 
publicity than accepting. Dirac largely escaped the public fascination and 
adulation that followed Newton and Einstein. 

Nevertheless, Dirac was certainly appreciated by his colleagues. He 
inherited Newton’s professorship at Cambridge (the Lucasian Chair), 
and after he died in 1984, a memorial plaque in his name was placed in 
Westminster Abbey, not far from Newton’s grave. Appropriately for the man 
of few words, the plaque includes his equation. It is the only formula that has 
been preserved for posterity in the church.
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the empire-builder 
the chern-gauss-bonnet 
equation

Although it is impossible to summarize a whole century of mathematics 
in a few sentences, or even in a few pages, some trends can be discerned. 
The connection between physics and mathematics, which had always 
been close, in the twentieth century became deeper and more mysterious. 
Physicists, beginning with Einstein, were routinely startled to discover that 
mathematicians had already developed the tools they needed. Vice versa, 
mathematicians kept on discovering that the problems and equations of 
physics led to the most interesting and deepest mathematics.

Another trend in the twentieth century, connected with the first, was the 
rise of geometry. Einstein’s theory of general relativity required space to be 
curved, and this demanded a non-Euclidean geometry whose curvature 
could vary from point to point. Gauss, Lobachevsky, and Bolyai had sowed 
the seeds of non-Euclidean geometry in the early 1800s, but their geometries 
had constant curvature. Bernhard Riemann made it possible to vary the 
curvature. Riemannian, or differential, geometry developed rather slowly for 
the first half of the twentieth century, but in the second half it exploded and 
became a central area of mathematics.

A third important, and invigorating, trend in mathematics was its 
increasing globalization, especially after the Second World War. Many 
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parts of ancient mathematics had been discovered in Asia, Egypt, or the 
Arab world before they reached western Europe. But from roughly 1500 to 
1900, mathematics was mostly a game for European males. Now, with the 
inequality of opportunity decreasing, the next great discovery is now (almost) 
as likely to come from a Zhang or an Alice as from a Smith or a Bob.

If I could choose one figure to exemplify all three of these trends, it would 
be Shiing-Shen Chern. Born in Jiaxing, China (near Shanghai) in 1911, 
Chern attended Nankai University near Beijing. He distinguished himself 
enough there to earn a scholarship to study in Europe. He studied for two 
years in Frankfurt with a geometer named Wilhelm Blaschke, then moved to 
Paris for a year to work with Elie Cartan.

At that time, differential geometry was not a very fashionable subject. 
Looking at Einstein’s field equations on page 161 may give you a sense of 
why. In order to describe the geometry of a curved space (or “manifold”), you 
need to establish a set of coordinates on it. When equations are written in 
terms of these coordinates, they are festooned with symbols (like the indices 
m and n in the field equations) that act merely as bookkeeping devices. 
Michael Spivak, author of a classic textbook on differential geometry, calls it 
“the debauch of indices.”

M represents an even-dimensional space or universe with no 
boundary. χ(M) is the Euler characteristic of the space, which 
in two dimensions tells you the number of holes it has. Ω is 
the curvature of the space. The formula allows you to deduce 
information about the overall shape of the universe if you 
know its curvature at every point.
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Ironically, the most important and interesting quantities in differential 
geometry are precisely those that do not depend on the choice of coordinates. 
In other words, we spend all this time keeping track of something that in 
the end we don’t care about! For example, in Einstein’s theory of general 
relativity, the independence of physical laws from the coordinate system was 
a fundamental tenet. Yet it took Einstein years to navigate the mathematics 
and find equations with the appropriate invariance.

Cartan, Chern’s mentor, had pioneered an approach to differential 
geometry, called “moving frames,” which worked without coordinates. 
However, Cartan’s theory was extremely obscure and difficult to understand. 
Chern became his foremost interpreter for the rest of the world. In the 
process he transformed Cartan’s theory from a local one, suitable for 
describing small pieces of a curved space, into a global one that dealt with 
space as a whole. Chern’s first famous result, considered by many (including 
Chern himself ) to be his greatest work, was a generalization of a nineteenth-
century theorem about surfaces that had been named after Karl Freidrich 
Gauss and Pierre Ossian Bonnet. The Chern–Gauss–Bonnet theorem, as it 
is now known, reads as follows:

What does this mean? From a top-level view, it means that if we live in a 
curved space or “manifold” (here denoted M), we can learn something about 
the global shape of our universe (here denoted χ(M), the Euler characteristic 
of M) by measuring the curvature (W) at every point. The Pfaffian (Pf ) is a 
specific computation we must do with the curvature, and the integral sign (∫) 
means that we have to add up the curvatures of every point in the manifold. 
This is a global theorem par excellence.

Let’s burrow a little bit deeper. In this formula the curved space M is 
assumed to be (2n)-dimensional. So in the simplest case, where n = 1, we are 
dealing with a two-dimensional space, or a surface. Surfaces have only one 
local geometric property that is independent of the coordinate frame, called 
the Gaussian curvature, K. If the surface is convex the Gaussian curvature is 
positive. If it is shaped like a potato chip, the curvature is negative. The total 
curvature within any region on the surface is a measure of how much the 
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geometry differs from Euclidean. For instance, if the total curvature within a 
triangle is x, then the sum of the angles of the triangle will be:

 
degrees

If the curvature is zero, the sum of the angles is 180 degrees, as Euclid had 
shown. For example, on a sphere, which is positively curved, you can find a 
triangle with three right angles. (See my discussion of Ant Geometry in Part 
Three, page 161.) The sum of the angles of this triangle is 90 + 90 + 90 = 270 
degrees, and hence the total curvature inside it must be π/2. 

Let’s check this prediction against the Gauss–Bonnet formula. The 
curvature at every point on the sphere is 

, where R is the radius of the sphere. 

The total curvature within the triangle is obtained by multiplying this 
curvature by the area of the triangle. The area of a sphere is 4πR2, and it takes 
eight right triangles to cover the sphere. Thus each triangle has an area of:

 or 

Multiplying the area by the curvature gives a total curvature of:

 or π/2, as promised.

T H E  G A U S S - B O N N E T  T H E O R E M  demarcates a transition point 
between ancient geometry (What is the sum of the angles of a triangle?) and 
modern geometry (How do we describe the global properties of a curved 
surface?). From now on, we will leave ancient geometry behind. In order to 
make the Gauss–Bonnet theorem global, we need to add up the curvature 
not only over one triangle, but over our whole surface. 

When we do this, we make an extraordinary discovery. If the surface M is 
roughly ball-shaped—it can be a sphere, a football, or anything else without 
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a hole—then its total curvature will always come out to 4π. That is:

If we do the same computation on any surface M that is more or less 
torus-shaped—it can be a doughnut, a coffee cup, a vuvuzela, or anything 
else with one hole—then the total curvature is 0. That is,

More generally, if the surface has g holes in it, then the total curvature 
allows us to detect the number of holes:

The number χ(M) =2 – 2g is the Euler characteristic of the surface. This 
formula matches the Chern–Gauss–Bonnet formula given above (with n = 
1, of course). 

The classical Gauss–Bonnet theorem for surfaces is remarkable for two 
reasons. First, it means that a very smart ant, using only Ant Geometry, can 
determine what kind of surface it is crawling on (a ball, a torus, or something 
more complicated). The curvature K is intrinsic to the surface, which means 
that an ant does not have to go outside the surface to measure it. 

Second, the total curvature of a surface is quantized. It is always a whole 
number times 2π. Thus this nineteenth-century formula foreshadows the 
preoccupation of twentieth-century mathematicians and physicists with 
quantization.

I T  I S  N O W  T I M E  to call Shiing-Shen Chern back from the wings. 
In 1943, Chern was extricated from Japanese-occupied China by the US 
Army and went to the Institute for Advanced Study in Princeton. While 
he was there, he heard that two other mathematicians, Andre Weil and 
Carl Allendoerfer, had proved a version of the Gauss–Bonnet theorem that 
worked for any even-dimensional curved space or manifold, not just two-



 179E Q U A T I O N S  I N  O U R  O W N  T I M E    

dimensional surfaces. However, their proof was ugly and 
unenlightening. It made an extra assumption that was later 
proved to be unnecessary. It resembled the Disney story of 
Dumbo who learns to fly with the aid of a magic feather 
and then finds out that the feather was never magic, and 
he could fly all along.

In a short, six-page manuscript published in 1946, Chern gave a proof 
that had none of these flaws, and that set postwar geometry on a new course. 
He introduced a concept called a fiber bundle, which is like a castle that has 
the manifold M as its floor plan. Everything that happens in the manifold 
is merely a pale reflection of what happens in the fiber bundle above it. In 
particular, Chern discovered that the curvature integrand (W) lies at the base 
of a tower of similar integrands, called differential forms, in the fiber bundle. 
When the curvature is integrated “upstairs” in the fiber bundle, rather than 
downstairs in the manifold, the Chern–Gauss–Bonnet theorem becomes 
almost obvious.

Almost, but not quite. Chern’s calculation was a tour de force, and his idea of 
doing the integral in the fiber bundle was a stroke of genius. The proof made 

Above An artistic digital 
interpretation of a torus-
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it evident that fiber bundles contained an untapped wealth of information 
about a space. Not only the Euler characteristic, but also a variety of other 
invariants, now called Chern characteristics and Chern–Simons invariants, 
have now been constructed in this way.

Chern’s work completed a cycle. Einstein and Dirac had shown that you 
could not do physics without geometry. Chern showed that you cannot 
do geometry without physics. The fiber bundle is the building in which a 
quantum field lives. To understand the shape of a space, you need to know 
what kinds of fiber bundles—or, what is essentially the same thing, what 
kinds of quantum fields—can be erected on that space. 

T W O  D E C A D E S  L A T E R ,  in 1963, Michael Atiyah and Isadore Singer 
made the links between math and physics even more explicit. They gave 
a proof of the Chern–Gauss–Bonnet theorem (and quite a bit more) that 
proceeds directly from solutions to the Dirac equation!

Why does the Chern–Gauss–Bonnet theorem matter? Because if we ever 
want to understand the kind of universe we live in, we do not have the option 
of going “outside” the universe. We will have to work from within, using the 
language that Chern pioneered. 

At the same time, I want to emphasize that mathematics is not only about 
the universe that we live in. To me, that is one of the main distinctions 
between mathematics and physics. Physics is supposed to be about our 
universe, and physical theories eventually have to be grounded at some 
point in experiment. On the other hand, mathematics is about all possible 
universes, the one we live in and those we do not. It is an amazing fact that 
to understand any possible universe (or at least any universe that is a smooth 
manifold with an even number of dimensions) you need the same language 
of fields and the same Dirac equation. For readers who are inclined to believe 
in a Creator, he (or she or it) must have been a very good mathematician!

Chern’s later career straddled two continents. He returned to China after 
the war, but was forced to leave again before the Communist government 
took power in 1949. He enjoyed a long and successful career in the United 
States, first at the University of Chicago and then at the University of 
California at Berkeley. Together with Singer and Calvin Moore, he founded 
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the Mathematical Sciences Research Institute in Berkeley, the first pure-
math institute in the United States, and served as its first director. After 
he retired from MSRI in 1984, he devoted himself to reviving Chinese 
mathematics, which had suffered greatly during the Cultural Revolution. 
He traveled to China frequently and obtained opportunities for Chinese 
graduate students to study in America. He also founded the Nankai Institute 
of Mathematics in Tianjin (which was renamed the Chern Institute after his 
death in 2004). Remarkably, he achieved the same sort of rock-star celebrity 
in China that Einstein did in the United States. 

Robert Bryant, a later director of MSRI, tells the story of how Chern went 
to watch the world table tennis championships in Tianjin in 1994. “The TV 
cameras were all there, showing the prime minister as he was seated,” says 
Bryant. “Then Mr. and Mrs. Chern walked in. The cameras went straight 
to them and ignored the prime minister! He was this iconic figure, a great 
intellectual figure who had showed what Chinese could do in the outside 
world.”

Like Dirac, Chern was very modest about his accomplishments, but unlike 
Dirac he was comfortable with people. He understood that mathematics 
advances not only by deriving formulas, but also by building institutions, 
such as MSRI and the Nankai Institute. According to Hung-Hsi Wu, a 
long-time colleague of his at Berkeley, “He was an empire-builder in the best 
sense of the word.”
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a little bit infinite 
the continuum hypothesis

Beginning in the 1870s, mathematicians began to realize that infinity 
actually comes in different sizes; a set can in fact be a little bit infinite or 
a whole lot infinite. The exploration of these different kinds of infinity has 
led to some of the most profound and paradoxical discoveries of twentieth-
century mathematics.

For most of the nineteenth century, mathematicians did their best to finesse 
the whole issue of infinity. There was good reason for that; as we have seen 
in Part One, the notion of infinity had been confounding mathematicians 
at least since the days of Zeno. In 1831, Gauss expressed this interdiction in 
a letter to Heinrich Schumacher: “I must protest most vehemently against 
your use of the infinite as something consummated, as this is never permitted 
in mathematics. The infinite is but a figure of speech …”

However, toward the end of the century, a consensus began to form that sets, 
rather than numbers, are the fundamental building blocks of mathematics. 
And you just can’t get around the fact that some sets are infinite: for example, 
the set of positive integers, {1, 2, 3, …}, or the set of numbers that form 
successive approximations to pi {3.1, 3.14, 3.141, 3.1415, …}.

Great scientists, like Einstein, are often the ones who are willing to face 
the inconvenient facts that other scientists would prefer to avoid. In the case 
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ℵ0 is the “size” or cardinality of the smallest infinite set 
(the integers). ℵ1 is the cardinality of the next smallest. If 
true, this formula would mean that the real numbers are 
the next smallest set after the integers. 

of set theory, it was another German mathematician named Georg Cantor 
who blazed a trail into the strange world of infinity.

To understand Cantor, we first need a way to describe what we mean by 
the “size,” or cardinality, of a set. First, Cantor suggested the following rule, 
a comparative or relative approach to defining the meaning of cardinality: If 
we can find a one-to-one matching between two sets A and B, so that each 
element of A corresponds to a unique element of B and vice versa, then the 
two sets have the same cardinality.

A good example (suggested by David Hilbert) is to think of A as the set 
of rooms in a hotel and B as the set of guests wanting a room. Ideally, we 
would like to place every guest in a separate room. In addition, if we are the 
proprietors of the hotel, we would like to fill up all the rooms. If we can do 
this, then the “number of guests” is the same as the “number of rooms.” 

Let’s suppose that the hotel has infinitely many rooms, which are labeled 
1, 2, 3, and so on. If a set of guests arrives that can fill up the hotel without 
overfilling it, the set is countably infinite. With this preamble, we can list the 
surprising facts that Cantor discovered about countably infinite sets:

1. If you add one element to a countably infinite set, you get a set of the 
same size! For instance, suppose you have filled your hotel, and then one 
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more guest arrives. You do not have to turn him away! You simply bump the 
guest in room 1 to room 2, the guest in room 2 to room 3, and so on. Presto, 
room 1 is now available for your new guest. 

2. If you combine two countably infinite sets, you get another set of the 
same size. Suppose the hotel is filled with a countably infinite number of 
guests, but then a second countably infinite party arrives. No problem! You 
can accommodate them too. Just bump the guest in room 1 to room 2, the 
guest in room 2 to room 4, the guest in room 3 to room 6, and so on. Now 
rooms 1, 3, 5, etc., are free for your infinite party of new guests.

3. Proceeding in similar fashion, the union of a countably infinite number 
of countably infinite sets is still countably infinite. This is a little bit tricky to 
explain in words, but the idea is shown visually below.

All of these facts are different from our everyday experience with finite 
sets, and frankly they seem a little bit like magic. But perhaps this should not 
surprise us too much. Physicists had to leave common sense behind when 
they encountered quanta, and infinite sets are also a strange new world. 

H A V I N G  E X P L A I N E D  �what it means to say that two sets have the 
same size, Cantor next invented an absolute measure of size, called cardinal 

numbers. Again, finite sets 
are easy. A set with one 
element has cardinality 1, 
a set with two elements 
has cardinality 2, and so 
on. Cantor proposed a new 
cardinal number to denote 
countably infinite sets: 
aleph-nought, or ℵ0. 

Left A countably infinite collection of  
countable sets (here shown as an infinite  
array) can still be counted. The arrows  
show how to place the array into a  
linear sequence.
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So far, I have yet to show you any set with cardinality greater than ℵ0. In 
fact, the three examples above show that , , and 

. However, Cantor showed that the set of all real numbers does 
have greater cardinality; that is, the real numbers cannot be accommodated 
in our countable hotel. The proof of this fact, called Cantor’s diagonal 
argument, is one of the most original and fundamental breakthroughs of 
modern mathematics, yet short enough to explain in a page.

Suppose that I try to come up with a room assignment for all the real 
numbers between 0 and 1. For the sake of argument, let’s say that the list 
starts as follows:

Room 1: 0.1415926 … (the decimal part of pi)
Room 2: 0.7182818 … (the decimal part of Euler’s number e)
Room 3: 0.4142135 … (the decimal part of √2)
Room 4: 0.5000000 …
Room 5: 0.1011001 … (I’m running out of interesting numbers, so this is 

just a random string of 1’s and 0’s).
Notice that the first digit of the first number is highlighted, as is the 

second digit of the second number, and so forth. Now Georg Cantor comes 
along and asks me, “Which room is this number in?” and he writes down the 
number 0.22511 …

It’s no secret how Cantor got this number: he simply took each of the bold 
numerals and added 1 to it. (If he had encountered the numeral 9, he would 
have changed it to a 0.) Cantor’s number cannot be in room 1 because its 
first digit disagrees with the number there. It cannot be in room 2 because 
its second digit disagrees with the number there. In fact, for the same 
reason it cannot be in any of the rooms in the hotel. The room assignment 
is incomplete! More importantly, Georg could repeat this procedure for any 
room assignment I came up with. Thus there is no way to accommodate the 
real numbers between 0 and 1 in the hotel (and so, of course, there is no way 
to accommodate all the real numbers).†

†	 This argument has a slight flaw in it due to the fact that some numbers have two decimal 
representations, for example 0.499… = 0.500… I have intentionally given this easier but flawed version 
for the non-experts. For math experts, repairing the inaccuracy takes a little work but in my opinion no 
fundamentally new ideas.
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To make intuitive sense of Cantor’s diagonal argument, I like to think 
of the number line as consisting of a countable set of bricks (the rational 
numbers) with a sort of “glue” of irrational, transcendental, and mostly just 
plain random numbers filling the gaps between them. Cantor’s argument 
shows that the vast majority of the number line is made of glue, not bricks. 

Having discovered a cardinal number greater than ℵ0, we need a name for 
it. The customary name, which emphasizes this bricks-and-mortar intuition 
about the number line, is the cardinality of the continuum, or c for short. The 
“continuum” is all of that glue that is hard to get off your hands.

Cantor also discovered a second, and more general, way to produce higher 
cardinalities. If S is a set, the set consisting of all of its subsets is called the 
power set of S. Let’s look at a few examples.

If S is a set with one element, say {1}, then it has two subsets, namely the 
empty set ∅ and the entire set {1}. Thus the power set has two elements.

If S is a set with two elements, say {1, 2}, then 
it has four subsets, namely ∅, the set {1}, the 
set {2}, and the set {1, 2}. Thus its power set 
has four elements. Note that 4 = 22.

Similarly, if S is a set with three 
elements, I invite the reader to check 
that the figure shown here has eight 
subsets. Note that 8 = 23.

At this point the pattern 
seems clear: the power set 
of S always has more 
elements than S. In fact, 
if the cardinality of S is n, 
then the cardinality of the 
power set is always 2n.

With a slight modification 
of the diagonal argument, 
Cantor showed that the same thing 
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is true for infinite sets: the power set of S always has greater cardinality than 
S itself. So there is no largest infinite cardinal number. The infinite cardinals 
form a vast tower that we cannot even begin to comprehend.

If we cannot ever scale the upper reaches of this tower, perhaps we can 
at least comprehend the beginning. We know that the “smallest” infinite 
cardinal is ℵ0. We know that the continuum, c, has a bigger cardinality, 
although we’re not quite sure yet just how much bigger. The power set of ℵ0 
also has larger cardinality than ℵ0, which we can denote  (by analogy 
with the pattern for finite sets).

Now Cantor asked: What is the next cardinal number after ℵ0? Is it c? Is 
it ? He partially answered this question, demonstrating that c = . In 
other words, the continuum and the power set of the integers have the same 
size. But could there be a cardinality that is intermediate in size between ℵ0 
and —a set that is “a little more pregnant” than the integers but “a little 
less pregnant” than the real numbers? Cantor believed the answer was no. 
In other words, the next cardinal number after ℵ0, which we denote by ℵ1, 
is . Because this is a book about equations, here is Cantor’s Continuum 
Hypothesis in equation form: .

C A N T O R  D I D  N O T  L I V E  �to see his question answered. He spent the 
last few years of his life confined to a mental institution, and died in 1918. 
Though it is tempting and facile to suggest that the lack of acceptance for his 
ideas “drove him crazy,” it is a temptation that must be resisted. Depression 
is too complex an illness to reduce to such a simple formula. What is true is 
that his work was deeply controversial. Some mathematicians of his era, such 
as Leopold Kronecker, rejected it in scathing terms, while others, such as 
David Hilbert, strongly endorsed it. “No one shall expel us from the paradise 
that Cantor has created,” Hilbert wrote. 

In 1900, when Hilbert compiled a list of the 23 most important problems 
for mathematicians to work on in the twentieth century, he placed 
the Continuum Hypothesis at the top of the list. As it turned out, the 
solution of the Continuum Hypothesis would be inextricably linked to the  
solution of the second problem on Hilbert’s list: a proof of the consistency 
of mathematics.
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By the early years of the twentieth century, the foundations of mathematics 
were in crisis. This seems to happen periodically in math history. The discovery 
of irrational numbers in ancient Greece provoked a crisis 
that led the Greeks to turn toward geometry instead of 
arithmetic as the foundation of mathematics. The discovery 
of calculus produced another crisis, because of its apparent 
manipulations of infinite and infinitesimal quantities. In 
reaction, mathematicians rejected “completed infinities,” 
as the quote from Gauss earlier in this chapter attests, and reformulated 
calculus to use only “potential infinities.” 

Cantor’s work on infinite sets set off another crisis. First, Cantor himself 
realized that there was no such thing as the set of all sets. If such a set 
existed, it would perforce have the largest cardinality possible, and yet we 
have just said that there is no largest cardinality. In 1901, the philosopher 
Bertrand Russell produced an even simpler paradox. Let R be the set of all 
sets that do not contain themselves. Does R contain itself ?

Well, let’s suppose it does. Then it is a set that contains itself, and therefore 
it is not an element of R, because R only contains sets that do not contain 
themselves. But that means R is not an element of R—contradicting the 
assumption that we just made that R contains itself !

These examples showed that mathematicians do not have complete 
freedom to create any set that we can describe in words. “Naïve set theory” 

Above Conceptual artwork 
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does not work. There must be some rules governing what is and is not 
permissible in set theory.

In 1908, Ernst Zermelo drew up a list of seven axioms for set theory that 
ruled out Cantor’s and Russell’s paradoxes. With some modifications in the 
1920s by Abraham Fraenkel (which brought the number of axioms to nine), 
his system has become the standard working foundation for the vast majority 
of practicing mathematicians.

In light of these developments, Hilbert’s second problem was reinterpreted 
as follows: prove that Zermelo–Fraenkel (ZF) set theory is consistent. If this 
could be done, then mathematicians could sleep soundly at night, knowing 
that there would be no more crises in the foundations of mathematics from 
paradoxes we have not thought of yet.

By 1928, Hilbert was optimistic that his problem was near to being solved. 
At that year’s International Congress of Mathematicians, he announced that 
only a few more details needed to be put into place in the proof. But within 
less than two years, the whole enterprise unraveled completely.

W I T H  H I N D S I G H T ,  Hilbert’s mathematical epistemology, called 
formalism, seems like a strange one. Hilbert believed that mathematics was 
essentially a formal game played with symbols. The symbols themselves have 
no intrinsic meaning. Every statement made with these symbols should be 
either true or false, and if true it should be provable from the axioms. (In 
other words, mathematics is complete.) Finally, it should never be possible to 
prove a statement to be both true and false; mathematics must be consistent.

It is a good thing that Hilbert’s vision turned out to be flawed, because he 
was proposing to rescue mathematics by killing it. If mathematics loses its 
content, then it also (I believe) loses most of its beauty. If mathematicians 
truly believed that they were doing nothing but pushing symbols around, I 
think that many of them would want to find another way of passing the time.

The person who rescued mathematics from Hilbert’s poorly conceived 
lifebuoy was Kurt Gödel, a young Austrian logician who was born in Brno 
(now part of the Czech Republic) in 1906. In 1930, Gödel proved that in 
any axiomatic system that is strong enough to include the normal rules of 
arithmetic, there must be statements that are both true and unprovable. In 
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other words, mathematics is incomplete. Very shortly after his first theorem, 
Gödel proved a second, more specific version: the consistency of the 
axiomatic system itself is unprovable. 

H O W  C A N  Y O U  �P O S S I B L Y  prove such a theorem as the 
incompleteness of mathematics? Gödel’s proof contains two main ideas. 
The first one is an adaptation of a very ancient paradox. 
The Liar’s Paradox concerns the following statement: 
“This statement is false.” If the statement is true, then it 
proclaims its own falsity. We are stuck in the same type of 
self-referential vicious circle that we were with Russell’s 
Paradox.

Gödel’s version of the Liar’s Paradox reads as follows: “This statement 
is unprovable.” If Gödel’s sentence is true, then it cannot be proved. If the 
statement is false, then it is both false and provable, which means that our 
axiom system is inconsistent. If we assume the consistency of ZF set theory as 

a premise, then the second possibility 
is ruled out, and therefore Gödel’s 
sentence is true and unprovable.

So far, though, we have not done 
any mathematics. The second, 
and even more ingenious, part of 
Gödel’s proof is a way of converting 
the non-mathematical statement 
“This statement is unprovable” 
into a mathematical statement 
about numbers. In any axiomatic 
system, Gödel realized, there are 
only ℵ0 possible statements. That is 
true because we have only a finite 
alphabet of possible symbols, and 
only a countable list of possible 
statement lengths. Therefore every 
statement—true, false, provable, 

Below Portrait of the 
Austrian-US logician and 
mathematician Kurt Gödel 
(1906–1978).
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unprovable, or just plain nonsensical—can be assigned a unique identifying 
number. Let’s imagine now that we have a list L of all the identification 
numbers of provable statements.

Now the assertion that a particular statement is unprovable reduces to 
a mathematical assertion: “This number is not in the set L.” Gödel uses a 
version of Cantor’s diagonal argument to show that at least one sentence of 
the form “This number is not in the set L” is, in fact, not on the list of provable 
statements. Thus that particular statement is both true and unprovable.

Gödel’s proof takes some getting used to; it is easy to get lost in the 
multiple layers of self-reference. It is intricately linked to Cantor’s diagonal 
argument and to the counterintuitive nature of infinite cardinals. You would 
expect that there are many more statements about the integers than there 
are integers themselves. But that is not true. The fact that you can encode 
every statement about the integers as an integer, and thus transform a meta-
mathematical statement into a mathematical statement, is sheer magic.

I like to think of Gödel’s Incompleteness Theorem as a counterpart to the 
Heisenberg Uncertainty Principle. (This is the statement from quantum 
physics that you cannot measure both the position and the momentum of a 
particle at the same time; more generally, that the act of measuring certain 
quantitites will alter the system in a way that destroys information about 
other quantities.) Both of them circumscribe the limits of what humans can 
possibly know—one in the domain of mathematics, the other in the domain 
of physics. Both results were discovered within ten years of each other. After 
a nineteenth century that was dominated by the Victorian belief in progress 
and the perfectibility of human knowledge, the twentieth century was an era 
when humans began to become aware of their own limitations. These two 
landmark discoveries are a part of the philosophical Gestalt of an era.

Though the philosophical implications of Gödel’s theorem were huge, 
its mathematical implications were curiously muted. In some ways, 
mathematicians shrugged their shoulders and went on with their business. 
From today’s perspective, the theorem is similar to the asteroid that killed off 
the dinosaurs. It killed off some mistaken ideas about mathematics, and it 
left a large crater, but today that crater is virtually impossible to detect.

Why is its influence so undetectable? One reason, I think, is that Gödel’s 
unprovable statements are very artificial. The statement “mathematics is 
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consistent” can be written down in words, but its mathematical version, 
after it has been converted to a statement about numbers, is impossible to 
write down. Gödel had still not found an unprovable statement with actual 
mathematical content—a statement that a mathematician might actually 
care about.

And that is where Cantor’s Continuum Hypothesis re-enters the picture. 
Is there a set larger than the integers but smaller than the real numbers? It’s a 
natural question. It seems accessible to our intuition. It’s certainly a question 
a mathematician would care about. And it is an undecidable question. In 
1940, Gödel showed that the Continuum Hypothesis cannot be disproved 
from the ZF axioms of set theory. And in 1963, an American mathematician, 
Paul Cohen, closed the circle by showing that the Continuum Hypothesis 
also cannot be proved from the ZF axioms. In other words, it is logically 
independent of the other axioms of set theory. You are free to assume it, or 
you are free to deny it. Neither the Continuum Hypothesis nor its negation 
will introduce any new paradoxes.

B O T H  G Ö D E L ’ S  A N D  C O H E N ’ S  arguments proceed by 
constructing a model of set theory, though I will not explain them in detail. 
Gödel restricted the universe of possible sets to what he called “constructible 
sets.” Within this model, he showed that the Continuum Hypothesis is 
true. Therefore, assuming the ZF axioms are consistent, it is impossible to 
disprove the Continuum Hypothesis. Cohen, on the other hand, worked 
out a way of extending the universe of possible sets beyond the minimal 
model allowed by the ZF axioms. Because it involves the creation of new 
sets, Cohen’s argument is more difficult than Gödel’s. But the bottom line is 
that he forced the Continuum Hypothesis to be false … within that model. 
Again, this does not mean that the “real” Continuum Hypothesis is false, but 
it does mean that it is impossible to prove the Continuum Hypothesis in all 
models of ZF set theory.

Cohen’s method of “forcing” allowed mathematicians and logicians to 
discover many other statements that are independent of the ZF axioms. 
In this sense, it has had a greater impact on mathematics than Gödel’s 
Incompleteness Theorem. The crater is still fresh.
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So is the story of the Continuum Hypothesis finished? It’s difficult to 
say. For now, most mathematicians are happy with the ZF axioms, if they 
even know them. As long as that remains the case, we will have to let the 
Continuum Hypothesis remain in the ambiguous state where Gödel and 
Cohen left it. But the ZF axioms may not remain so fashionable forever. 
Remember that you can never prove an axiom system; it is only a starting 
point. Someday logicians might devise an axiom system that mathematicians 
will like better than ZF, and then the Continuum Hypothesis will have to 
be reconsidered.

After the Second World War, Gödel ended up at the Institute for 
Advanced Study in Princeton, where he became best friends with Albert 
Einstein. Einstein once said that on many days the only reason he would 
come to the Institute was “to have the privilege to walk home with Gödel.” 
However, in later years Gödel’s behavior became increasingly odd; for 
example, he believed in ghosts, and he thought that someone was trying to 
poison him. He would eat only food that he had personally prepared, and in 
the end, he practically starved himself to death. 

Cohen, thankfully, had none of the struggles with mental health that 
Cantor and Gödel did. Born in 1934, he grew up in Brooklyn and was a self-
taught prodigy. He never finished college but went straight on to graduate 
school in 1953, at the age of 19. Curiously, he was not trained as a logician, 
but was attracted to the Continuum Hypothesis because he had a strong 
intuition that it was false. (That’s right, he disagreed with Cantor.) 

Sometimes it takes the fresh outlook of a non-expert to break out of an 
intellectual logjam. Immediately after he discovered the idea of forcing, 
other logicians seized on it, and Cohen found himself unable to keep up 
with them. Nevertheless, Cohen had the honor of being first, and his work 
received high praise from none other than Gödel himself. “You have just 
achieved the most important progress in set theory since its axiomatization,” 
Gödel wrote to him. 



194

23

    P A R T  F O U R

theories of chaos 
lorenz equations

John von Neumann had a dream. In 1954, speaking at the dedication of 
the world’s new largest computer, Neumann (one of America’s first great 
computer scientists) predicted that computers would one day make it 
possible to forecast the weather for 30 to 60 days.

More than half a century later, computer power has grown beyond 
Neumann’s wildest dreams. Yet computer weather forecasting has made 
only incremental improvements. Two-day forecasts are now pretty reliable. 
Five-day forecasts, considerably less so. And not even the most optimistic 
meteorologist dreams any more of predicting a storm 60 days in advance.

What went wrong? The answer, in a word, is chaos. 
A chaotic system is one that obeys deterministic rules—such as the 

equations that describe how air circulates in the atmosphere—yet behaves, 
after a certain amount of time, as if it were random. In theory, if you have 
perfect information about a chaotic system, you can make perfect forecasts. 
But the slightest inaccuracy or incompleteness in your data will grow 
exponentially over time, and eventually render your forecast useless.

Ironically, the one tool that most enabled scientists to grasp the 
implications of chaos, and thereby to place a permanent limit on the power 
of computation … was the computer. The computer did something that von 
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Neumann never expected. Instead of merely crunching numbers, it provided 
humans a new way of looking at the world.

A second irony is that the person who first understood the mathematical 
concept of chaos was not a mathematician. Edward Lorenz, a meteorologist, 
discovered the equations above that effectively ended von Neumann’s dream. 

Lorenz’s three simple equations, which describe a highly idealized 
atmosphere, are shown above. It is worth taking a little bit of time to 
understand what these equations mean. First, note that they are differential 
equations: they express the rate of change of three variables (x, y, and z) in 
terms of their current values. Calculus was built to solve such equations. They 
are the type of equations Newton and Laplace used to describe the motion 
of planets, and that Apollo engineers used to send rockets to the Moon. 
For centuries, scientists assumed that the solutions to such equations were 
manageable and predictable.

Second, note that the equations are nonlinear. They include two terms (xz 
in the second equation, and xy in the third one) that are not first powers 
of the variables but products of two variables (which makes them count as 
second powers). This tiny detail makes all the difference in the world.

Linear equations describe a textbook world, where effects are always 

x, y, and z are meteorological variables in an abstract and highly simplified 
model of the atmosphere. These equations were historically the first 
dynamical system in which scientists recognized the possibility of chaos.
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proportional to their causes. The whole is always exactly equal to the sum 
of its parts. A tiny error in measuring one of the variables will remain a tiny 
error—or at worst, will grow in nice linear fashion—for all time. It is a world 
where the weather is predictable for weeks, or months, or even forever.

T H E  R E A L  W O R L D ,  however, is nonlinear. Feedback loops amplify 
small causes into big effects. In biology, nonlinearity arises whenever 
one cell signals another cell to stop working, or start 
working harder. In chemistry, nonlinearity occurs when 
one chemical catalyzes a reaction involving another. In 
aerodynamics, the equations become nonlinear when 
the air turns into a moving object rather than a passive 
medium. Most of the interesting phenomena in science, 
including anything that involves the mediation of one part 
of a system by another part, are nonlinear.

In the Lorenz equations, thanks to those two terms xy and xz, the variable 
x mediates the way that z responds to y, and also mediates the way that 

y responds to z. Nevertheless, 
this nonlinearity seems so mild 
that nearly every mathematician 
who has seen these equations has 
probably thought, “Why, I could 
solve them!” But they can’t.

Now I’ll explain what the 
variables x, y, and z meant to 
Lorenz when he wrote these 
equations down in 1963. Lorenz’s 
model describes the convection 
of air in a long rectangular tube 
when the bottom is heated. Hot 
air tends to rise, so eventually a 
rolling current forms, with hot 
air rising on one side of the tube 
and cool air descending on the 

Below The Lorenz 
Attractor, a three-
dimensional graph 
which became  
emblematic of chaos.
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other. But in Lorenz’s model, the convection current eventually starts going 
too fast. The hot air doesn’t have a chance to cool down completely before it 
gets swept down the other side of the tube. Hot air doesn’t like to descend, 
so this slows down the rolling motion—which eventually stops, and then 
switches direction. These reversals of direction constitute the unpredictable 
feature of the system.

Lorenz describes the meaning of the variables x, y, and z as follows: x 
represents the strength of the convective current; y represents the size of the 
temperature gradient between the ascending and descending streams. The 
meaning of z is a bit elusive, but it is crucial: “The variable z is proportional 
to the distortion of the vertical temperature profiles from linearity, a positive 
value indicating that the strongest gradients occur near the boundaries,” 
Lorenz writes.

When the variables x, y, and z are plotted over time, from almost any 
starting point, they will eventually coalesce around an intricate, butterfly-
shaped structure, shown opposite. The two “wings” of the butterfly 
correspond to the two directions of rotation of the convection currents. A 
typical trajectory starts toward the center of one wing and gradually spirals 
outward. Eventually it goes “too far” out (the convection currents get out 
of control). At that point the trajectory plunges through the complicated 
mess between the two wings and emerges on the other side, ready to start its 
spiraling motion again.

If you start a second trajectory at a slightly different point, it will behave the 
same way for a little while. Both trajectories may, for instance, make two loops 
around the left wing, then three loops around the right. But the distance 
between the trajectories will grow, and then there will come a time where 
trajectory 1 veers left while trajectory 2 heads right. From then on, the two 
trajectories will be uncorrelated. It is easy to make the metaphorical leap to 
weather forecasts. Think of “left” as “sunny” and “right” as “rainy.” If trajectory 
1 represents the real weather, while trajectory 2 represents a forecast based 
on slightly different initial conditions, the two may agree for a few days, but 
eventually the forecast is guaranteed to bear no resemblance to reality.

Before we leave the details of the Lorenz model behind, let me point out 
one more curious feature: the seemingly arbitrary constants, 10, 28, and 8/3. 
These are called “parameters,” and they have a strong effect on the shape 
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of the solutions. If you replace the number 28 by 24 (or any number below 
about 24.8), the chaos disappears; the convection currents are not sufficiently 
excitable. Starting from any initial state, the convection currents will 
eventually settle down into a stable state, either rotating left or rotating right. 
After that, the system becomes 100 percent predictable. Thus, nonlinearity is 
not a guarantee of chaos; it merely opens up the possibility. The tipping point 
where a regular system becomes chaotic often depends on parameters that 
we cannot observe. 

In one short paper, Lorenz had identified most of the main ingredients of 
chaos, although he had not named them yet: Sensitive dependence on initial 
conditions (the “butterfly effect”)‡; long-term behavior that is controlled by 
an infinitely complicated (and beautiful!) geometric structure (later called a 
“strange attractor”); a parameter (or several) that can switch on or switch off 
the chaos; and nonlinear but completely deterministic dynamics.

The importance of Lorenz’s paper was not immediately apparent; it was 
buried in a specialist journal, read only by meteorologists. However, the 
same process repeated in other disciplines. Michel Hénon, an astronomer, 
discovered chaos in the equations governing stellar orbits around a galaxy’s 
center. David Ruelle, a physicist, along with mathematician Floris Takens, 
discovered strange attractors in turbulent fluid flow. Robert May, a biologist, 
discovered chaos in the simplest system of all: a one-variable equation that 
had been used for years to model populations competing for scarce resources.

Each of these pioneers was isolated at first, and they all faced disbelief 
from other scientists. A colleague of Lorenz, Willem Markus, recalled in 
James Gleick’s bestselling book Chaos: Making a New Science what he told 
Lorenz about his equations: “Ed, we know—we know very well—that fluid 
convection doesn’t do that at all.”

This incredulity is perhaps a typical reaction to any paradigm-altering 
discovery. In the case of chaos there were specific reasons why mathematicians 
and other scientists had been so blind for so long. When mathematicians 
teach their students differential equations, they concentrate on the simplest, 
most understandable cases first. First, they teach them to solve linear 

‡	 This name came from the title of a paper that Lorenz himself presented in 1972, called “Predictability: 
Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?” 
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equations. Next, they might teach them about some simple two-variable 
systems, and show how the behavior of the solutions near a fixed point can 
be described by linearizing. No matter what the number of variables, they 
will always concentrate on equations that can be solved explicitly: x(t) is 
given by an exact formula involving the time t.

A L L  O F  T H E S E  simplifying assumptions are perfectly understandable, 
especially the last one. Solving equations is what mathematicians do … or 
did, in the years bc (before chaos). And yet these assumptions are collectively 
a recipe for blindness. Chaos does not occur in linear systems; it does not 
occur in a continuous-time system with less than three variables;§ and it 
does not occur in any system where you can write a formula for the solution. 

It is as if mathematicians erected a “Danger! Keep out!” sign at all of 
the gates leading to chaos. Scientists from other disciplines—biologists, 
physicists, meteorologists—never went past the “Keep out!” signs, and so 
when they encountered chaos it was something utterly unfamiliar.

A very small number of mathematicians did venture past the warning signs. 
The first one, universally acknowledged by all chaos theorists, was Henri 
Poincaré, France’s greatest mathematician at the turn of the century. In 1887, 
he entered an international competition, sponsored by the King of Sweden, 
to find a solution to the three-body problem, in other words to find explicit 
formulas for the trajectories of three or more mutually gravitating planets. 
Isaac Newton had, of course, solved the problem for two bodies, and it had 
been a bone in the throat of mathematicians ever since that they could not do 
the same for even the simplest system of three bodies.

Poincaré won the prize even though he did not solve the problem. In fact, 
he thought he had solved it, but as he was preparing his manuscript for 
publication (after he had been awarded the prize!) he discovered a mistake. 
He had assumed that small perturbations in a planet’s motion would produce 
small effects. Analyzing a planet’s “return map” more carefully, he realized 
that was not the case. Thus, he clearly discovered the first hallmark of chaos, 

§	 In discrete-time systems, such as May’s equation that describes the change in population of a 
species from one year to the next, chaos is possible even with only one variable.
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the sensitive dependence on initial conditions. Much more obscurely, he 
sensed the second feature as well, the strange attractor. In the following 
passage he is describing the trajectories of planets in phase space, but I 
encourage you to think about the Lorenz attractor as you read it:

“These intersections form a kind of lattice-work, a weave, a chain-link 
network of infinitely fine mesh; each of the two curves can never cross itself, 
but it must fold back on itself in a very complicated way so as to recross all 
the chain-links an infinite number of times … One will be struck by the 
complexity of this figure, which I am not even attempting to draw.”

He is not describing the Lorenz attractor per se, but 
he might as well be. There, too, we see a phenomenally 
complex interweaving of curves, a sort of freeway where 
infinitely many lanes merge and then go off in different 
directions without colliding. Thus mathematicians had the 
opportunity to discover chaos in 1893, when Poincaré’s 
book appeared. But they didn’t. They were not prepared to 
look for chaos; the whole point of the prize competition 
was to look for stable solutions. 

The other reason mathematicians were blind to chaos was that they had 
no computers, and were left with the kind of vague description that Poincaré 
gave, which other mathematicians failed to understand. With a computer, 
you can’t help but see the attractor in all its glory. For scientists like Lorenz 
and Hénon who were not professional mathematicians, Poincaré’s work 
was inaccessible but the strange attractors were there on their computer 
printouts, begging to be explained.

B E T W E E N  1 8 9 3  A N D  �1 9 7 0 , mathematicians assembled some of the 
ingredients of chaos theory, without managing to bring them all together. 
Around the same time as Poincaré, Aleksandr Lyapunov in Russia defined 
the Lyapunov exponent, a measure of the tendency of nearby trajectories 
to diverge. In the 1930s and 1940s, Mary Cartwright and John Littlewood 
in England studied the van der Pol equation, an early nonlinear equation 
used in radio and radar. Littlewood commented on the “whole vista of 
the dramatic fine structure of solutions.” In the 1960s, Steven Smale, an 

Opposite Fractal image of 
part of the Mandelbrot Set. 
Fractal geometry is part of 
the mathematics of chaos, 
the study of unpredictable 
dynamical systems. 
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American mathematician and fervent anti-Vietnam War activist, described 
very general topological conditions which guaranteed that a dynamical 
system would approach a complicated limit set. This established that chaos 
was a generic phenomenon that exists over a wide range of parameter values. 
Finally, Benoit Mandelbrot in France, for completely different reasons, 
opened up the world’s eyes to the ubiquity of “fractals” in nature. The Lorenz 
attractor, with a fractional dimension of about 2.07, is a prime example. 
Mandelbrot put his finger exactly on what was strange about strange 
attractors: they have fine structure at every scale, so that a magnified version 
looks just as finely filigreed as an unmagnified version.

I N  T H E  1 9 7 0 S  the grand synthesis occurred. The disparate scientists 
who had encountered chaos began to find each other and connect with 
the mathematicians who could explain their discoveries. In 1975 the field 
acquired its seductive nickname, thanks to a paper by Tien-Yien Li and 
James Yorke, called “Period Three Implies Chaos.” Li and Yorke showed that 
a one-variable discrete dynamical system, like the one studied by May, must 
be chaotic if there is even one point that comes back to itself after three time 
steps. A Ukrainian mathematician, Olexandr Sharkovsky, had proved the 
same fact eleven years earlier, but no one in the West knew about it because 
of the lack of communication across the Iron Curtain. Sharkovsky’s paper 
was finally translated in 1995 and the theorem is now known after him, but 
Li and Yorke had the honor of giving “chaos theory” its name.

In the 1980s and ’90s, the trope of “chaos” leaped out of the realm of 
science and into popular culture. James Gleick brought attention to the 
field with his best-selling book. In the blockbuster movie Jurassic Park, one 
of the leading characters is a doom-predicting chaos theorist, and chaos is 
the central metaphor for the disastrous failure of scientists to anticipate the 
consequences of their actions.

The same period was a high-water mark for the subject, with three 
major chaos journals launching in 1990 and 1991. Two decades later, the 
excitement has died down a bit. In fact, I was surprised to read in a recent 
historical survey that “as a unified site of social convergence, the ‘science of 
chaos’ does not exist any more.”
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I think the obituary is premature. Certainly a number of interesting 
discoveries have been made in chaos since 1990. Perhaps the most surprising 
is synchronized chaos. You might expect that two oscillators that both behave 
in an apparently random way would be impossible to synchronize. Yet it 
turns out that if you feed just one of the three output variables of one Lorenz 
oscillator (or any other chaotic system of your choice) into another Lorenz 
oscillator, both of the other variables in the second oscillator will also lock 
onto the first oscillator. It is an ingenious way to exploit the deterministic 
laws that lie hidden underneath the apparent randomness. This may explain 
how living organisms, such as nerve cells, synchronize their behavior.

Other recent developments include the discovery of limited forms of 
“quantum chaos.” For a long time the equations of quantum mechanics 
resisted the incursion of chaos because they are linear. It’s a good thing they 
are; we would not want the electrons, protons, and neutrons that make up 
matter to be unstable. But somewhere in the “quasi-classical limit,” the gray 
zone between the macroscopic world and the quantum world, chaos has to 
make its appearance, and both mathematicians and physicists have been 
probing how.

Finally, much work remains to be done in understanding turbulent fluids. 
Chaos is not the end of the story, but only the beginning. Using Lyapunov 
exponents, scientists can find the invisible attracting structures and repelling 
structures that orchestrate fluid motion. They can identify where the flow 
is chaotic and where it is not. They can map out, for example, the invisible 
dividing line between water in the Gulf of Mexico that will circulate back 
into the gulf and water that will escape into the Atlantic. Methods like this 
could have been used to predict the motion of the BP oil spill in 2010.

So I think it is fair to say that the concept of chaos is alive and well, and 
always will be, now that we have finally learned to see it. The discipline  
of chaos is also alive and well, although it may have outlived the fad  
stage and will probably end up being seen as an organic part of a more 
traditionally named discipline, such as “dynamical systems” or “nonlinear 
differential equations.”
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taming the tiger 
the black–scholes equation

In 2003, Roy Horn—half of the famous performing duo Siegfried & Roy—
was bitten on the neck by one of his own tigers. Roy nearly died, and his 
performing days were over. To fans, it was a shocking reminder that tigers 
are still tigers. The sheer technical proficiency of Siegfried & Roy had lulled 
audiences into complacency. As Neil Strauss wrote in The New York Times: 
“Danger was still present, but it was no longer recognized as such.”

A similar thing could be said about the Black–Scholes equation. Published 
in 1973 by Fischer Black and future Nobel Prize winner Myron Scholes 
(with a big assist from another future Nobelist, Robert Merton), it seemed to 
take the danger out of investing. It led to an explosive growth in the market 
for financial products called derivatives—essentially, bets on the direction 
that certain other assets, such as stocks and bonds,* would move. Like the 
Las Vegas audiences of Siegfried & Roy, Wall Street was dazzled by the 
technical proficiency with which a new generation of traders, called “quants,” 
wielded the Black–Scholes equation. Danger—or as financial engineers call 
it, “risk”—seemed to be under control.

*	 In the rest of this chapter, for convenience, I will refer to stocks, although stock options are actually 
far from being the most common kind of derivative.
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But tigers are still tigers, and financial markets are still financial markets. 
Not once but three times since Fischer and Scholes’ breakthrough—in 1987, 
1998, and 2007—the market has turned on the people who thought they 
could control it. No one has been killed, but careers have been ruined and 
fortunes lost. The credit crisis of 2007–8, in particular, led to the most severe 
recession in America since the Great Depression of the 1930s. 

Some people have tried to blame mathematics, or the quants, for these 
events. For example, an article in Wired in 2009 referred to “the formula 
that killed Wall Street.” But before we can pass judgment, we should first 
understand what Black, Scholes, and Merton accomplished.

Let’s start with a greatly simplified example of a derivative. Suppose that 
today’s price of one share of stock in the Well-A-Day Oil Company is $100. 
Suppose also that you happen to know that the stock has a 50-50 chance of 
rising to $101 tomorrow, and a 50-50 chance of dropping to $99. Amazingly, 
you can use this knowledge to turn a guaranteed profit of 50 cents per share, 
even though you don’t know which way the stock is going to go. 

First, you call up your broker and you ask him to give you an option to buy 
two shares of Well-A-Day stock tomorrow for $100 each. This seems like a 
reasonable deal, right? After all, there is an equal chance that the price will 

V is the market value of a financial derivative called a call option, and S 
is the value of the underlying asset (e.g., a stock) at maturity. r and σ 

represent the interest rate and the volatility of the stock. The equation gave 
economists the possibly mistaken impression that risk can be managed 
according to objective laws that resemble the laws of physics.



206    P A R T  F O U R

be above $100 or below $100. (Note: If your broker agrees to this, he is a fool 
and will go out of business soon, but I’ll explain why in a moment.)

Now, armed with your option, you hedge it by borrowing one share of 
Well-A-Day from your friend Bob and selling it for $100. The next day, 
there is a 50-50 chance that the stock will go down to $99. In that case, 
you let the option expire unclaimed, but you can buy one share for $99 and 
return it to Bob. Your profit is $1, because you bought for $99 and sold for 
$100. On the other hand, if the stock goes up to $101, then you claim your 
option and buy two shares from your broker for $100 each. You return one 
to Bob, and sell the remaining share for $101, the current market price. Once 
again, your profit is $1, because you bought two shares for $200 and sold 
them for $201. Thus, no matter what happens, you earn a dollar. It doesn’t 
matter whether the price of the “underlying asset” goes up or down.

T H I S  H E D G I N G  P R I N C I P L E  has been rediscovered many times over 
the years. Prior to 1973, the people who discovered it usually thought they 
had discovered the secret to getting rich. In a typical book called Beat the 
Market! from 1967, economist Sheen Kassouf writes about his epiphany, “I 
realized that an investment could be made that seemed to insure tremendous 
profit whether the common rose dramatically or became worthless. I would 
win whether the stock went up or down! It looked too good to be true.”

Of course, like all get-rich-quick schemes, it is too good to be true, for two 
reasons. First, your broker will get wise to this game pretty fast. In fact, the 
hedging principle shows that the option to buy one share of Well-a-Day for 
$100 tomorrow is actually worth 50 cents today. The option itself has value. 
However, in the early days of option trading, brokers and investors did not 
have a very good idea of how to price real-world options (as opposed to this 
made-up example). When Kassouf and his co-author Edward Thorp wrote 
their book, they could sift through the published prices of stock warrants (the 
most common type of option available then) and find mispriced warrants. A 
savvy investor could beat the market.

Secondly, even if we can find a broker who will sell us the option for the 
wrong price—say, 49 cents instead of 50 cents—we will realize our profit 
(which is now down to a cent per share!) only if we are absolutely right 
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about our prediction that the stock will either go up to $101 or down to $99. 
Unlike normal investors, who base their investments on the direction that 
the stock is going to move, we don’t care about the direction. But we do care 
about the volatility—the size of the jump. Given the narrow margin for error, 

the hedging principle will only work if our estimate of the 
stock’s volatility is right on the money.

However, this critical point was hidden by the technical 
virtuosity of the Black–Scholes formula. Suppose that we 
want to find the fair market value, V, of a call option—an 
option to buy Well-A-Day stock at price K (the “strike 
price”) at time T (the “expiration date”). We don’t want to 

cheat anyone; we just want to know how much this option is worth. 
Clearly, the option’s value depends on the current stock price, S. The higher 

the current price, the more likely it is that the stock price will still be above K 
on the expiration date. Also, the value depends on the time remaining until 
expiration, T – t. Even if the option is “out of the money” today, more time 
gives the stock more of a chance to rise to the strike price. Finally, on the 
expiration date, the value of the option is either 0 (if the stock price is below 
K) or else it is S – K (because if the stock price is above K, we will exercise 
the option and buy it for K dollars, then go to the open market and sell it 
for S dollars). Thus at time T, the option’s value looks like the solid line in 
the graph below. At earlier times t, before the expiration date, the option’s 

Above Symbols of the 
stock exchange: The bull 
and bear statues outside 
the stock exchange in 
Frankfurt, Germany.
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value should be a little bit higher, like the dotted line in the figure. But how  
much higher?

Black, Scholes, and Merton proved that there is a fair market value V(S, 
t). This is pretty surprising, because you might think that an investor who is 
bullish on Well-A-Day would value the option differently from someone 
who is bearish. Their main idea was to use dynamic hedging to eliminate risk. 
This is just a more elaborate version of the hedging principle, in which the 
investor has to adjust his or her portfolio constantly, in accordance with the 
current price S and time t. The effect is the same: dynamic hedging makes it 
irrelevant whether we personally believe the stock will go up or down. 

Thus the bulls and the bears can agree on the value of the option—
provided that they agree on a model for the volatility. And that was the 
second ingenious stroke of Black and Scholes. They proposed a model 
of stock prices that was so “intuitively obvious” that hardly anyone could 
disagree with it. Changes in stock prices, they said, have two components: 
an upward or downward drift plus a random jiggle. It’s only the size of the 
jiggle, the volatility, which matters for the option price, and this volatility is 
measured by a number sigma (s). A well-known function, called the normal 
distribution or the bell-shaped curve (see opposite), gives the likelihood of 
any particular size of fluctuation. For example, the likelihood of a “one-sigma” 
(or more) increase in the price is about 15.8 percent, and the likelihood of a 
“two-sigma” increase is about 2.2 percent.

Above On the expiration date, the value of an option to buy stock at $650 looks like the solid line. Because of 
dynamic hedging strategies, the value of the option before the expiration date is always higher (dotted line).
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Why was the Black–Scholes proposal so seductive? Perhaps because the 
bell-shaped curve is so familiar. Any stochastic process that amounts to 
infinitely many independent flips of a coin (even a biased coin) will produce a 
normal distribution. If you’ve ever watched a stock ticker, you have probably 
seen an endless stream of pluses and minuses scroll past, indicating upticks 
and downticks of the stock. It really does look like an infinite (or nearly 
infinite) succession of coin flips. 

F I N A L L Y ,  B L A C K  A N D  S C H O L E S  �had one more stroke of genius. 
Unlike previous investors who saw the hedging strategy as a way to beat the 
market, they insisted that there is no way to beat the market. If you hedge 
your portfolio in a way that eliminates risk, you should get exactly the same 
rate of return as someone who invests in the most risk-free investment—a 
30-year US Treasury bond. This argument closed the loop and gave them the 
Black–Scholes equation:

In this equation, the left-hand side represents the return on your 
investment if you buy the option and hedge it dynamically according to Black 
and Scholes’ prescription. The right-hand side represents the return if you 

Above The standard deviation, denoted σ, is a measure of the amount of 
spread in a classic bell-shaped curve.
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simply put it in the bank (with r representing the interest rate). According to 
Black and Scholes, in an efficient market the two returns are equal.

Like Maxwell’s equations and the heat equation, the Black-Scholes 
equation is a partial differential equation, a type that physicists and 
mathematicians are very aware of. The same sort of equation describes 
the diffusion of molecules in a gas, because their motion likewise consists 
of innumerable tiny jiggles. For the simplest call options, Black and 
Scholes deduced an exact solution for the value V. However, the Black– 
Scholes equation also applies to all sorts of other, more “exotic” options, such 
as options based on more than one underlying stock or options based on 
mortgage defaults.

Remarkably, one mathematician had anticipated Black and Scholes by 
more than 70 years. In 1900, a student of Poincaré named Louis Bachelier 
had studied an almost identical model of option prices—including the same 
idea of random fluctuations—and derived an almost identical equation. But 
Bachelier lived at the wrong time. The discipline of mathematical economics 
did not yet exist. Pure mathematicians were very interested in his idea of a 
process consisting of infinitely many small jiggles (now called “Brownian 
motion”). However, they were not the least bit interested in Bachelier’s 
motivating example. One colleague, Paul Lévy, wrote a disparaging comment 
in his personal notebook: “Too much on finance!”

But by 1973, the world was ready. That year, the world’s first options 
exchange opened in Chicago. Over the next two decades, the Black–Scholes 
formula changed Wall Street. First of all, it created jobs for a whole new 
kind of trader—a “quant,” usually someone with a mathematics or physics 
background who understood differential equations. But perhaps more 
importantly for society, Black–Scholes created an aura of invincibility around 
mathematical finance. Options, once seen as a somewhat disreputable 
investment (a high-risk wager on the stock market), now seemed to be the 
exact opposite. They were an essential tool for controlling or eliminating risk. 
For Black, Scholes, and Merton, it was an article of faith that the world 
was gradually moving toward an ideal state where you truly couldn’t beat 
the market, and all options would be rationally priced according to the 
mathematical models. From this point of view, quants weren’t just making 
money; they were helping to make the market more efficient.
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Just like von Neumann’s dream of perfect weather forecasting, the dream 
of perfect markets never came true. The first crack appeared in 1987, on 
Black Monday, when the Dow Jones Industrial average dropped by more 
than 22 percent, by far its biggest one-day percentage loss ever. It was widely 

blamed on programmed trading—the kind of automatic 
selling of stock that dynamic hedging requires.

The second crack, in 1998, was much more personally 
embarrassing to the theory’s founders. By this times, 
Scholes and Merton were both partners in a hedge 
fund called Long-Term Capital Management (LTCM). 
Although they were not involved in day-to-day operations, 

the two Nobel Prize winners lent a huge amount of prestige to the fund, 
which was like a laboratory experiment in risk-neutral investment. 

Between 1994 and 1998, LTCM quadrupled its investors’ money and 
seemed to live up to the promise of guaranteed returns. Then, over a span of 
less than two months, it all came crashing down. A cascade of events, starting 
with the Russian government defaulting on its debts, pushed volatilities to 
stratospheric levels, far beyond where the models said they should have gone. 

Above Brownian motion: 
computer artwork of the 
small seemingly random 
movements of particles 
suspended in a fluid 
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LTCM hemorrhaged money. Finally, with the company on the brink of 
bankruptcy, the Federal Reserve Bank organized a bailout by a consortium 
of fourteen leading private banks—a move the banks agreed to, reluctantly, 
because they feared that LTCM was “too large to fail.” If it went down, they 
could fall like dominos.

F I N A L L Y  A N  E V E N  G R E A T E R  C R I S I S  rocked the financial world 
in 2007. This time it was a collapse in the market for credit derivatives—
one of the more exotic kinds of derivatives mentioned earlier. This time, 
the Black–Scholes formula was more peripherally involved. For several 
years, banks had been offering “subprime” loans to home buyers who would 
not have qualified in the past. The banks were not motivated by altruism; 
they believed that they could control the risk of default by lumping many 
mortgages into one security called a collateralized debt obligation (CDO). 
The quants had developed a convenient formula based on the normal 
distribution (called the “Gaussian copula”) that gave a fair market value for 
the CDO’s … provided that the correlation between loan defaults was zero 
(or at least not too big). In other words, if a homeowner in Miami forecloses, 
it shouldn’t affect a homeowner in Las Vegas.

But in 2007 the housing bubble burst, and a wave of foreclosures swept 
the entire nation. Suddenly Miami affected Las Vegas and vice versa. During 
a panic, all the correlations go to one. Banks across the country did not 
have enough capital to cover their bets, and one after another they started 
failing: Bear Stearns, Washington Mutual, Lehman Brothers. Once again 
the government had to intervene, only in a much bigger way than before. 
The Secretary of the Treasury announced a $700 billion bailout, or “Troubled 
Asset Relief Program.” In an unprecedented move, the government actually 
acquired one of the “too-big-to-fail” companies—AIG, the world’s largest 
insurance firm. Unlike in 1998, the private sector did not have enough 
healthy banks left to do the job.

The common denominator in all of these debacles was the failure of 
mathematical models to anticipate the volatility of the markets. The normal 
distribution is based on the assumption of innumerable small actors making 
innumerable random choices, all independently of each other. But when 
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one actor gets too big (like LTCM) or when the actors stop behaving 
independently (as in the panic situations of 1987 and 2007–8), the model 
does not apply. In fact, a small group of dissident economists has argued 
for years that models like Black–Scholes should never be used because they 
underestimate the probability of extreme events.

However, the Black–Scholes equation and the philosophy behind it are by 
now too ingrained to just throw them out. Instead, economists are trying to 
come up with refinements that better reflect how real markets behave. For 
example, in the “jump diffusion” model, stock prices have three components: 
long-term drift, short-term stochastic jiggles, and intermittent jumps due to 
lurches of the stock market as a whole. This certainly seems to agree better 
in a qualitative way with reality. Black–Scholes does work very nicely most 
of the time, aside from the random infrequent occasions when it doesn’t 
work at all. Another approach is to view the volatility s as being given by a 
stochastic process itself, or by an empirical function of S and t. Unfortunately, 
all of these ideas have a kludgy feel to them. They seem contrived to preserve 
the outward appearance of the Black–Scholes formula without maintaining 
its internal consistency.

In the end, the question remains: Can mathematics tame the tiger that is 
the future? Or will it always break out of its cage just when we least expect 
it? I cannot pretend to answer this question; it is something for twenty-
first century economists, financial engineers, and mathematicians to work 
on. Until they succeed, or else prove a new Impossibility Theorem, the lesson 
from 1987, 1998, and 2007 is definitely “buyer beware.”
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what of the future?

The end of this book invites a question: What comes next for equations?
First, the good news. The enterprise of mathematics and science worldwide 

seems still to be in very healthy shape. There seems to be an upward trend 
in the sheer quantity of important formulas, which mirrors the growth of 
mathematics and science in our society. When I began working on this book, 
in 2008, I searched an authoritative website, Wolfram MathWorld for three 
terms: “equation,” “formula,” and “identity.” The search engine dutifully 
reported 1947 equations, 1253 formulas, and 992 identities. Three years later, 
the same search yields 2032 equations, 1307 formulas, and 1026 identities. 

Another positive development is the Internet, which has made the sharing 
of scientific ideas so much easier. Remember how in the “bad old days” of 
the 1500s and 1600s, mathematical progress was repeatedly slowed by the 
reluctance of researchers to share their work. And even in the 1900s, politics 
prevented some of the work of Soviet mathematicians from becoming widely 
known in the West. Now, thanks to such websites as the e-print archive, as 
well as mathematical forums and blogs, the barriers to communication are 
lower than they ever have been.

On the other hand, not all of the signs are positive. Indeed, there are some 
reasons to think that the twentieth century may have been a high-water mark 
for interesting, consequential, and beautiful equations.

First, although we have added 173 equations, formulas, and identities in the 
last three years, there is no guarantee that they meet the criteria I listed in the 
Introduction. Are they surprising, concise, consequential, and universal? Does 
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the twenty-first century really have such monumental surprises in store as 
quantum physics, chaos, or Gödel’s Incompleteness Theorem? It’s impossible 
to predict, but to me those look like oceans that can only be crossed once. 
Geographers eventually ran out of new continents on Earth to discover, and 
it seems possible that mathematicians will face the same problem.

Also, changes are afoot in the way mathematics is conducted. The computer 
has brought humans a new way of knowing. Forecasting the climate or 
mapping the human genome involve the collection of staggering amounts of 
data—amounts too great for the human mind to comprehend. Scientists have 
to devise new ways to sift through the data and identify what is important. 
The most important patterns may not be expressible any more in the form of 
an equation. Perhaps they will be encoded into an artificial intelligence and 
not even understandable by human brains at all.

Let me give a specific example where this change has already happened. 
Over the last 25 years, chess players’ ways of knowing has been dramatically 
changed by the computer. For example, there are positions that a computer 
can solve but a human cannot. Perhaps the most technical endgame that 
humans can master is checkmate with a king, bishop, and knight against a 
lone king. The procedure is tricky, but it can be broken down into stage, and 
it takes at most 33 moves (according to the computer) if both sides play their 
best. However, computers have discovered other endgames, such as king, 
rook, and bishop against king and two knights, where it takes as long as 223 
moves for the stronger side to win, assuming both players play perfectly. And 
the moves are completely incomprehensible to humans. When you compare 
the position after move 80 to the position after move 50, it is impossible to 
explain why the stronger side is 30 moves closer to victory.

The point of this example is that some kinds of knowledge are too 
complicated for the human mind to grasp. They are not necessarily deep, just 
intricate. Equations have evolved as a powerful tool that enables us to grasp 
some ideas that cannot (or can only with great difficulty) be put into words. 
But the truths lurking in the databases of the twenty-first century may not be 
understandable even with equations. They may be the scientific equivalent of 
the 223-move checkmate.

Finally, I expect some changes in the ways mathematics is used. Historically, 
mathematics has been tied closely to physics, but in the next century we are 
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likely to see more applications to other disciplines, such as biology or social 
sciences. The idea of using math to cure cancer is tremendously exciting. 

But there is a catch. In order to say anything about the universe with 
mathematics, we have to construct a mathematical model. And models are 
always imperfect. First, they always oversimplify reality in some way; and 
second, every mathematical model begins with assumptions. Sometimes they 
seem so obvious or so well established by experiment that we forget they are 
assumptions. We fall in love with our models, and then a major trauma ensues 
when we have to modify or discard them. Think again of non-Euclidean 
geometry or the discovery of chaos in deterministic dynamical systems.

For reasons that are not entirely understood, mathematical models 
historically have worked remarkably well in physics. However, in biology that 
is not likely to be the case. As a rule, any mathematical model that describes 
biological processes with any degree of fidelity will tend to fail the conciseness 
test. It will have many equations and it will be difficult to grasp the reasons for 
even the most fundamental behaviors. We start entering the domain of the 
223-move checkmate. For example, mathematical biologists have developed 
computer simulations of the heart, which can reproduce such conditions as 
ventricular tachycardia and fibrillation. Nevertheless, there is not yet any 
agreement on why the most basic treatment, a defibrillator, actually works. 

In sum, I have no doubt that a sequel to this book written a hundred years 
from now will include six pretty wonderful equations from the twenty-first 
century. Whether they will be quite as wonderful as Einstein’s equations, 
or Dirac’s equation, or chaos, I’m not so sure. We will probably have major 
breakthroughs in mathematical biology that completely fail the conciseness 
test. There will be many discoveries analogous to the 223-move checkmate, 
which cannot be expressed either in words or equations but have to be 
encoded into an artificial intelligence. The whole idea of an equation might 
begin to look a little bit quaint.

However, let’s not forget that mathematics has an extraordinarily long 
tradition. Certain things do not change rapidly. One hundred years from now, 
I predict that there will still be few things quite as satisfying as filling in both 
sides of an equals sign.

? = ?
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